Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 216: 136-144, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28641150

RESUMO

The aim of the present work was to analyze the impact of salinity on the plant response to Cd toxicity in the Mediterranean halophyte species Inula crithmoides. For this purpose, cuttings were cultivated hydroponically during 21d in the presence of 0, 25 or 50µM CdCl2 combined or not with 0, 100, 200 and 400mM NaCl. The obtained data demonstrated that, in the absence of Cd, NaCl strongly increased plant growth (the maximal dry weight being observed at 100mM) and enhanced the Na+/K+ ratio in the shoot. Cd alone strongly affected plant growth in this halophyte. However, in Cd-treated plants, NaCl protected Inula crithmoides from Cd toxicity and contributed to reduce Cd absorption and translocation. Small aliphatic polyamine (putrescine, spermidine, spermine) increased in response to both NaCl and CdCl2, the highest concentration in plants being observed when both agents are present in the medium. The recorded increase preferentially concerned the polyamine bound fraction, which might be related to their involvement in the protection of endogenous cellular structures. The aromatic monoamine tyramine also strongly increased in response to Cd toxicity and its putative role is discussed in relation to conjugation processes. Salinity and Cd increased ammonium/nitrate ratio in leaves and roots and the involvement of stress-induced modification of N nutrition on polyamine oversynthesis is also discussed.


Assuntos
Cádmio/toxicidade , Inula/fisiologia , Poliaminas/metabolismo , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/farmacologia , Tiramina/metabolismo , Compostos de Amônio/metabolismo , Biomassa , Inula/anatomia & histologia , Inula/efeitos dos fármacos , Inula/crescimento & desenvolvimento , Nitratos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Potássio/metabolismo , Plantas Tolerantes a Sal/anatomia & histologia , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Sódio/metabolismo
2.
Front Plant Sci ; 6: 156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821455

RESUMO

The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

3.
Environ Sci Pollut Res Int ; 21(12): 7607-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24604274

RESUMO

The low bioavailability of Pb and low number of Pb-tolerant plant species represent an important limitation for Pb phytoextraction. It was recently suggested that halophyte plant species may be a promising material for this purpose, especially in polluted salt areas while Pb mobility may be improved by synthetic chelating agents. This study aims to evaluate Pb extraction by the halophyte Sesuvium portulacastrum in relation to the impact of EDTA application. Seedling were cultivated during 60 days on Pb artificially contaminated soil (200, 400, and 800 ppm Pb) in the presence or in the absence of EDTA (3 g kg(-1) soil). Results showed that upon to 400 ppm, Pb had no impact on plant growth. However, exogenous Pb induce a decrease in shoot K(+) while it increased shoot Mg(2+) and had no impact on shoot Ca(2+) concentrations. Lead concentration in the shoots increased with increasing external Pb doses reaching 1,390 ppm in the presence of 800 ppm lead in soil. EDTA addition had no effect on plant growth but strongly increased Pb accumulation in the shoot which increased from 1,390 ppm in the absence of EDTA to 3,772 ppm in EDTA-amended plants exposed to 800 ppm exogenous Pb. Both Pb absorption and translocation from roots to shoots were significantly enhanced by EDTA application, leading to an increase in the total amounts of extracted Pb per plant. These data suggest that S. portulacastrum is very promising species for decontamination of Pb(2+)-contaminated soil and that its phytoextraction potential was significantly enhanced by addition of EDTA to the polluted soil.


Assuntos
Aizoaceae/metabolismo , Biodegradação Ambiental , Ácido Edético/farmacologia , Chumbo/metabolismo , Plantas Tolerantes a Sal/metabolismo , Poluentes do Solo/metabolismo , Aizoaceae/efeitos dos fármacos , Quelantes/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo
4.
Chemosphere ; 90(4): 1449-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23026160

RESUMO

The implication of organic acids in Pb translocation was studied in two species varying in shoot lead accumulation, Sesuvium portulacastrum and Brassica juncea. Citric, fumaric, malic and α-cetoglutaric acids were separated and determined by HPLC technique in shoots, roots and xylem saps of the both species grown in nutrient solutions added with 200 and 400 µM of Pb(II). The lead content of the xylem saps was determined by ICP-MS. Results showed that S. portulacastrum is more tolerant to Pb than B. juncea. Lead concentration in xylem sap of the S. portulacastrum was significantly greater than in that of B. juncea. For both species, a positive correlation was established between lead and citrate concentrations in xylem sap. However minor relationship was observed for fumaric, malic and α-cetoglutaric acids. In the shoots lead treatment also induced a significant increase in citric acid concentration. Both observations suggest the implication of citric acid in lead translocation and shoot accumulation in S. portulacastrum and B. juncea. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could explain its high potential to translocate and accumulate this metal in shoot suggesting their possible use to remediate Pb polluted soils.


Assuntos
Aizoaceae/fisiologia , Chumbo/metabolismo , Mostardeira/fisiologia , Poluentes do Solo/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Fumaratos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
5.
J Hazard Mater ; 183(1-3): 609-15, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20708335

RESUMO

Lead phytoextraction from salty soils is a difficult task because this process needs the use of plants which are able to tolerate salt and accumulate Pb(2+) within in their shoots. It has recently been suggested that salt-tolerant plants are more suitable for heavy metals extraction than salt-sensitive ones commonly used in this approach. The aim of this study was to investigate Pb-phytoextraction potential of the halophyte Sesuvium portulacastrum in comparison with Brassica juncea commonly used in Pb-phytoextraction. Seedlings of both species were exposed in nutrient solution to 0, 200, 400, 800 and 1000 µM Pb(2+) for 21 days. Lead strongly inhibited growth in B. juncea but had no impact on S. portulacastrum. Exogenous Pb(2+) reduced nutrients uptake mainly in B. juncea as compared to S. portulacastrum. Lead was preferentially accumulated in roots in both species. S. portulacastrum accumulated more Pb(2+) in the shoot than B. juncea. Hence, the amounts of Pb(2+) translocated at 1000 µM Pb(2+) were 3400 µg g(-1) DW and 2200 µg g(-1) DW in S. portulacastrum and B. juncea, respectively. These results suggest that S. portulacastrum is more efficient to extract Pb(2+) than B. juncea.


Assuntos
Aizoaceae/metabolismo , Biodegradação Ambiental , Chumbo/farmacocinética , Mostardeira/metabolismo , Aizoaceae/efeitos dos fármacos , Aizoaceae/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Mostardeira/efeitos dos fármacos , Mostardeira/crescimento & desenvolvimento , Plantas , Plantas Tolerantes a Sal/metabolismo , Plântula
6.
Bioresour Technol ; 101(11): 3978-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20129779

RESUMO

Sludge application is a reliable practice to ameliorate soil fertility. However, repetitive sludge addition represents a potential soil contamination source with heavy metals, which must be extracted. The aim of this study was to evaluate the capacity of Brassica napus to remove metals from soils amended with sludge, and to study the effect of EDTA on this process. Seedlings were cultivated in presence of sludge combined or not with EDTA. Results showed that sludge ameliorate significantly biomass production. This effect was accompanied with an increase in Pb, Zn and Mn shoot concentrations. EDTA application does not affect significantly plant growth. However, this chelator enhances shoot metals accumulation. It's therefore concluded that sludge has a beneficial effect on soil fertility, B. napus can be used for the decontamination of affected soils and that the EDTA addition increases the ability of B. napus to accumulate heavy metals.


Assuntos
Brassica napus/metabolismo , Quelantes/química , Ácido Edético/química , Metais Pesados/isolamento & purificação , Esgotos , Poluentes do Solo/isolamento & purificação , Biomassa , Brassica napus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...