Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Proced Online ; 26(1): 20, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926669

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.

2.
J Mol Model ; 30(5): 153, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691244

RESUMO

CONTEXT: CO2 and CO gas sensors are very important to recognize the insulation situation of electrical tools. ToCO explore the application of noble metal doped of aluminum nitride nanotubes for gas sensors, DFT computations according to the first principal theory were applied to study sensitivity, adsorption attributes, and electronic manner. In this investigation, platinum-doped aluminum nitride nanotubes were offered for the first time to analyze the adsorption towards CO2 and CO gases. Firm construction of platinum-doped aluminum nitride nanotubes (Pt-AlNNT) was investigated in four feasible places, and the binding energy of firm construction is 1.314 eV. Respectively, the adsorption energy between the CO2 and Pt-AlNNT systems was - 2.107 eV, while for instance of CO, the adsorption energy was - 3.258 eV. The mentioned analysis and computations are considerable for studying Pt-AlNNT as a new CO2 and CO gas sensor for electrical tools insulation. The current study revealed that the Pt-AlNNT possesses high selectivity and sensitivity towards CO2 and CO. METHODS: In this research, Pt-doped AlNNT (Pt-AlNNT) has been studied as sensing materials of CO and CO2 for the first time. The adsorption process of Pt-AlNNT has been computed and analyzed through the DFT approach. DFT computations by using B3LYP functional and 6-31 + G* basis sets have been applied in the GAMESS code for sensing attributes, which contribute to potential applications.

3.
RSC Adv ; 14(22): 15680-15690, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38752156

RESUMO

Desulfurative functionalization of organosulfur compounds to form various carbon-carbon and carbon-heteroatom bonds has become established as a powerful tool in organic chemistry. In this context, desulfurative carboxylation of this class of compounds using carbon dioxide (CO2) as a sustainable and renewable source of carboxyl has recently been developed as an efficient option for the synthesis of carboxylic acid derivatives. The aim of this Focus Review is to summarize the major progress in this appealing research field with particular emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2024, according to the data collected using SciFinder and Google Scholar engines.

4.
Heliyon ; 10(10): e30748, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38774319

RESUMO

The physical and mechanical properties of biopolymers can be improved by heating technologies. In this research, we improved the properties of Polyvinyl alcohol (PVA)/Uncaria gambir extract (UGE) blend films by post-heating method. After post-heating, the blend film exhibited higher resistance to UV light and improved contact angle performance, while water vapor permeability and moisture absorption decreased. The tensile strength and toughness of the PVA/UGE blend film with a post-heating duration of 40 min were 68.8 MPa and 57.7 MPa, respectively, an increase of 131 % and 127 %, compared to films without post-heating. This facile and cost-effective fabrication method, with environmentally friendly properties, can be applied to biodegradable PVA/UGE blend films to achieve desired properties for optical devices or food packaging materials.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38767672

RESUMO

Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.

6.
J Mol Graph Model ; 130: 108774, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648693

RESUMO

Water is an indispensable material for human life. Unfortunately, the development of industrial activities has reduced the quality of water resources in the world. Meantime, heavy metals are an important factor in water pollution due to their toxicity. This study highlights the method for the capture of heavy metal ions from wastewater using the procedure of adsorption. The adsorption of toxic heavy metal ions (Pb2+, Hg2+, and Cd2+) on Ca2C as well as Cr2C carbide-nitride MXene monolayers is investigated using the density functional theory. We have carried out the optimization of the considered MXenes by nine DFT functionals: PBE, TPSS, BP86, B3LYP, TPSSh, PBE0, CAM-B3LYP, M11, and LC-WPBE. Our results have shown a good agreement with previously measured electronic properties of the Ca2C and Cr2C MXene layers and the PBE DFT method. The calculated cohesive energy for the Ca2C and Cr2C MXene monolayers are -4.12 eV and -4.20 eV, respectively, which are in agreement with the previous studies. The results reveal that the adsorbed heavy metal ions have a substantial effect on the electronic properties of the considered MXene monolayers. Besides, our calculations show that the metal/MXene structures with higher electron transport rates display higher binding energy as well as charge transfers between the metal and Ca2C and Cr2C layers. Time-dependent density functional analysis also displayed "ligand to metal charge transfer" excitations for the metal/MXene systems. The larger Ebin for the Pb@Ca2C as well as Pb@Cr2C are according to larger redshifts which are expected (Δλ = 45 nm and 71 nm, respectively). Our results might be helpful for future research toward the application of carbide-nitride MXene materials for removing wastewater pollutants.


Assuntos
Metais Pesados , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química , Elementos de Transição/química , Teoria da Densidade Funcional , Íons/química , Purificação da Água/métodos , Modelos Moleculares
7.
Med Glas (Zenica) ; 20(2)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018057

RESUMO

Aim To assess the cochlear damage caused by cisplatin in the rat cochlea based on decreased signal to noise ratio (SNR) values on otoacoustic emission (OAE) examination and increased expression of signal transducer and activator of transcription 1 (STAT 1) and vascular endothelial growth factor (VEGF) on immunohistochemical examination. Methods Twenty-four Rattus norvegicus were divided into 4 groups and injected with 8 mg/kgBW of cisplatin intraperitoneally except for control group. The SNR on OAE examination were checked before the treatment and on day 3, 4, and 7 after the treatment. The cochleas were stained immunohistochemically, followed by assessment of the cochlear organ of Corti damage based on STAT 1 and VEGF expression. Results A decrease in the mean of SNR value was found in accordance with the length of cisplatin exposure. The STAT 1 and VEGF expression increased with duration of cisplatin exposure. A correlation was found between SNR values, STAT 1, and also VEGF expression (p<0.05). Conclusion An increase of STAT 1 and VEGF expression influences cochlear damage due to cisplatin administration. There was a correlation between STAT 1 and VEGF expression with SNR values in the cochlear organ of Corti of Rattus norvegicus exposed to cisplatin.

8.
Narra J ; 3(2): e184, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38450259

RESUMO

CRISPR-Cas9 has emerged as a revolutionary tool that enables precise and efficient modifications of the genetic material. This review provides a comprehensive overview of CRISPR-Cas9 technology and its applications in genome editing. We begin by describing the fundamental principles of CRISPR-Cas9 technology, explaining how the system utilizes a single guide RNA (sgRNA) to direct the Cas9 nuclease to specific DNA sequences in the genome, resulting in targeted double-stranded breaks. In this review, we provide in-depth explorations of CRISPR-Cas9 technology and its applications in agriculture, medicine, environmental sciences, fisheries, nanotechnology, bioinformatics, and biotechnology. We also highlight its potential, ongoing research, and the ethical considerations and controversies surrounding its use. This review might contribute to the understanding of CRISPR-Cas9 technology and its implications in various fields, paving the way for future developments and responsible applications of this transformative technology.

9.
RSC Adv ; 12(34): 21916-21925, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36043093

RESUMO

In this study, bentonite modified by zirconium nitride (ZrN) and zirconium phosphide (ZrP) catalysts was studied in the hydrocracking of crude palm oil to biofuels. The study demonstrated that bentonite was propitiously modified by ZrN and ZrP, as assessed by XRD, FTIR spectroscopy, and SEM-EDX analysis. The acidity of the bentonite catalyst was remarkably enhanced by ZrN and ZrP, and it showed an increased intensity in the Lewis acid and Brønsted acid sites, as presented by pyridine FTIR. In the hydrocracking application, the highest conversion was achieved by bentonite-ZrN at 8 mEq g-1 catalyst loading of 87.93%, whereas bentonite-ZrP at 10 mEq g-1 showed 86.04% conversion, which suggested that there was a strong positive correlation between the catalyst acidity and the conversion under a particular condition. The biofuel distribution fraction showed that both the catalysts produced a high bio-kerosene fraction, followed by bio-gasoline and oil fuel fractions. The reusability study revealed that both the catalysts had sufficient conversion stability of CPO through the hydrocracking reaction up to four consecutive runs with a low decrease in the catalyst activity. Overall, bentonite-ZrN dominantly favored the hydrocracking of CPO than bentonite-ZrP.

10.
J Anal Methods Chem ; 2022: 5029036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463191

RESUMO

In this work, a novel electrochemical sensor was developed by electron-withdrawing substituent modification of 1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone on a graphene-modified glassy carbon electrode (HPMpFP-graphene/GCE) for glucose detection. The results of characterizations using a scanning electron microscope, Fourier transform infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy showed the successful fabrication of HPMpFP-graphene nanocomposite, which served as an electroactive probe for glucose detection. The electron transfer ability of HPMpFBP-graphene/GCE has been successfully revealed using cyclic voltammetry and electrochemical impedance spectroscopy results. The good electrochemical performance was shown by well-defined peak currents of square wave voltammetry under various parameters, including pH, HPMpFP and graphene composition, and scan rate effect. A high electrochemically evaluated surface area using chronoamperometry suggested that the present glucose detection response was intensified. The chronoamperometry results at a work potential of 0.4 V presented a wide linear range of 1 × 103-90 µM and 88-1 µM with 0.74 µM (S/N = 3) as the detection limit. An acceptable recovery has been revealed in the real sample analysis. The electrochemical sensing behaviour of the composite indicates that it may be a promising candidate for a glucose sensor and it significantly extends the range of applications in the electrochemical field.

11.
J Nanosci Nanotechnol ; 21(12): 5867-5880, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229781

RESUMO

The usefulness of carboxymethyl cellulose (CMC) as a matrix material in enhancing the controlled release formulations of bispyribac (BP) herbicide from the interlayer gallery of zinc hydroxide nitratesodium dodecylsulphate-bispyribac (ZHN-SDS-BP) nanocomposite was investigated. The CMC coated nanocomposite, ZHN-SDS-BP-CMC was characterised using several instruments for the determination of its physicochemical properties. The release rates of the BP were measured using a UV spectrophotometer, and the aqueous solutions containing PO3-4 , SO2-4 and Cl- were selected as release media in the release studies so as to mimic the real conditions of environmental soil. Significant release time delays, triggered by the gelation forming ability and hygroscopic nature of CMC, were observed in all release media, and the release processes were found to behave in a concentration-dependent manner in all release media. Fitting the release data into several kinetic models demonstrated that release in aqueous solutions of Na3PO4 and Na2SO4 was governed by pseudo second order processes, whereas the release in an aqueous NaCl solution was governed by the parabolic diffusion kinetic model. The potential of CMC in prolonging the release of BP from ZHN-SDS-BP-CMC can potentially help in reducing the pollution resulting from the overuse of pesticides.


Assuntos
Herbicidas , Nanocompostos , Benzoatos , Carboximetilcelulose Sódica , Preparações de Ação Retardada , Hidrogéis , Hidróxidos , Nitratos , Pirimidinas , Sódio
12.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813385

RESUMO

This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10-8⁻7.0 × 10-7 M (R² = 0.9876), 1.0 × 10-6⁻1.0 × 10-5 M (R² = 0.9836) and 3.0 × 10-5⁻3.0 × 10-4 M (R² = 0.9827) with a limit of detection of 4.4 × 10-9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...