Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353306

RESUMO

Rotationally resolved Fourier-transform spectra of laser-induced fluorescence A1Σu+∼b3Πu→X1Σg+ of K2 molecules were recorded and analyzed, yielding 4053 term values of the spin-orbit (SO) coupled A ∼ b complex of the 39K2 isotopologue with ∼0.01 cm-1 accuracy. Their compilation with 1739 term values from previously published sources allowed them to cover the energy range [9955, 17 436] cm-1 from the bottom of the lower-lying b3Πu state up to the vicinity of the atomic asymptote 4s2S12 + 4p2P12, with a rotational quantum number J ∈ [0, 149]. The experimental data were processed by a direct 6 × 6 coupled-channel (CC) deperturbation treatment, which accounted explicitly for both SO and electronic-rotational interactions between all six e-symmetry states: A1Σu+(0u+), b3Πu(0u+,1u,2u), c3Σu(1u), and B1Πu(1u). The initial parameters of the global deperturbation model have been estimated in the framework of ab initio electronic structure calculations applying multi-reference configuration-interaction and coupled-clusters methods. The interatomic potentials analytically defined for A and b states, as well as SO-splitting of the triplet b state and A ∼ b SO-coupling functions, have been particularly refined to fit the 5792 term values of the 39K2 isotopologue, whereas the rest parameters were fixed on their ab initio values. The resulting mass-invariant parameters of the 6 × 6 CC model reproduced the overall rovibronic term energies of the A ∼ b complex of 39K2 with accuracy, which is well within the experimental errors. The quality of the deperturbation analysis was independently confirmed by comparison with the present obtained 705 and 14 term values of respective 39K41K and 41K2 isotopologues, as well as by agreement between measured and predicted relative intensity distributions in long A ∼ b → X(vX) band progressions. This deperturbation analysis provided the refined dissociation energy Tdis = 17 474.569(5) cm-1 and the long-range coefficient C3Σ = 5.501(4) × 105 cm-1 Å3 relevant to the non-relativistic atomic limit 4s + 4p. The derived Tdis yielded the accurate well depth De = 4450.910(5) cm-1 for the ground X1Σg+ state, whereas the new C3Σ value yielded the improved estimates for atomic K(4p2P12;32) radiative lifetimes, τ12 = 26.67(3) and τ32 = 26.32(3) ns.

2.
J Chem Phys ; 154(22): 224303, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241194

RESUMO

The YbOH triatomic molecule can be efficiently used to measure the electron electric dipole moment, which violates time-reversal (T) and spatial parity (P) symmetries of fundamental interactions [Kozyryev and Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. We study another mechanism of the T, P-violation in the YbOH molecule-the electron-electron interaction mediated by the low-mass axionlike particle. For this, we calculate the molecular constant that characterizes this interaction and use it to estimate the expected magnitude of the effect to be measured. It is shown that this molecular constant has the same order of magnitude as the corresponding molecular constant corresponding to the axion-mediated electron-nucleus interaction. According to our estimation, an experiment on YbOH will allow one to set updated laboratory constraints on the CP-violating electron-axion coupling constants.

3.
Phys Chem Chem Phys ; 22(4): 2295-2306, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31930240

RESUMO

The spin-orbit (SO) interactions in low-lying electronic states of the LiM (M = Na, K, Rb, Cs) molecular series are studied through ab initio calculations of potential energy curves and SO coupling matrix elements as functions of the interatomic distance, R. Two different approaches are employed: (a) the Fock-space relativistic coupled-cluster calculations (FS-RCC) which directly yield full relativistic energies, Urel(R); the SO coupling functions, ξso(R), are extracted a posteriori through projecting scalar-relativistic wave functions onto the subspaces spanned by their full-relativistic counterparts; (b) the evaluation of the scalar-relativistic electronic energies, Usr(R), and relevant ξso(R) functions using the configuration interaction method with core-valence correlation accounted for using core polarization potentials (CI-CPP). The SO-free potentials and SO coupling functions obtained within the framework of both approaches are in good agreement with each other and their prior theoretical and empirical counterparts.

4.
J Chem Phys ; 124(18): 184318, 2006 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-16709117

RESUMO

We present experimental data on the electric permanent dipole moments d(v',J') and lambda splittings (q factors) in the quasidegenerate (3) 1pi(e/f) state of the NaCs molecule over a wide range of the vibrational (v') and rotational (J') quantum numbers by using the combination of dc Stark mixing and electric radio frequency-optical double resonance methods. Within the experimental (3) 1pi state v' ranged from v' = 0 to 34, q values exhibited a pronounced decrease from 7.91x10(-6) to 0.47x10(-6) cm(-1), while absolute value(d) values varied between 8.0 and 5.0 D. Experimental evaluation yielded small d values about 1 D for D2 1pi state v' < 3 levels. The experiment is supported by ab initio electronic structure calculations performed for the (1-3) 1pi states of NaCs by means of the many-body multipartitioning perturbation theory of potential energy curves, permanent dipole, and angular coupling matrix elements for the lowest singlet states. The predicted d values reproduce their experimental counterparts within the measurement errors while theoretical q factors reproduce the measured v' dependence being, however, systematically overestimated by ca. 1x10(-6) cm(-1). The present NaCs data are compared with those of the NaK and NaRb molecules.

5.
J Chem Phys ; 125(24): 241102, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17199333

RESUMO

Interactions of eka-Hg (E112) and Hg atoms with small gold clusters were studied in the frame of the relativistic effective core potential model using the density functional theory (DFT) approach incorporating spin-dependent (magnetic) interactions. The choice of the exchange-correlation functional was based on a comparison of the results of DFT and large-scale coupled cluster calculations for E112Au and HgAu at the scalar relativistic level. A close similarity between the E112Aun and HgAun equilibrium structures was observed. The E112 binding energies on Aun are typically smaller than those for Hg by ca. 25%-32% and the equilibrium E112-Au separations are always slightly larger than their Hg-Au counterparts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA