Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31156551

RESUMO

C3H/HeJ (C3H) mice are deficient of type I deiodinase (D1), an enzyme that activates thyroid hormone (TH), converting thyroxine (T4) to triiodothyronine (T3). Nevertheless, C3H mice present normal serum T3 and a gross euthyroid phenotype. To investigate if a global D1 deficiency interferes in the TH effects on bone, we compared bone growth, bone mass accrual and bone strength of C3H and C57BL/6J (B6) mice under abnormal TH status. Four-week-old female mice of both strains were grouped as Euthyroid, Hypothyroid (pharmacologically-induced), 1xT4 and 10xT4 (hypothyroid animals receiving 1- or 10-fold the physiological dose of T4 /day/16 weeks). Hypothyroidism and TH excess similarly impaired body weight (BW) gain and body growth in both mice strains. In contrast, whereas hypothyroidism only slightly impaired bone mineral density (BMD) accrual in B6 mice, it severely impaired BMD accrual in C3H mice. No differences were observed in serum and bone concentrations of T3 between hypothyroid animals of both strains. Interestingly, treatment with 10xT4 was less deleterious to BMD accrual in C3H than in B6 mice and resulted in less elevated T3 serum levels in B6 than in C3H mice, which is probably explained by the lower D1 activity in C3H mice. In addition, hypothyroidism decreased bone strength only in C3H but not in B6 mice, while TH excess decreased this parameter in both strains. These findings indicate that D1 deficiency contributes to the TH excess-induced differences in bone mass accrual in C3H vs. B6 mice and suggest that deiodinase-unrelated genetic factors might account for the different skeleton responses to hypothyroidism between strains.

2.
Endocrinology ; 146(1): 195-200, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15471965

RESUMO

Thyroid hormone affects multiple aspects of bone metabolism, but little is known about thyroid hormone deiodination in bone cells except that cultures of skeletal cells and bone organ express types 1 and 2 iodothyronine deiodinases (D1 and D2) mRNAs. In the present study, outer ring deiodination (ORD) activity was detected in bone extracts of multiple sites of the mouse skeleton, bone marrow, and the MC3T3-E1 osteoblastic cell line. In all tissues, ORD was detected using 125I-rT3 or 125I-T4 as substrates and was found to be 6-n-propylthiouracil insensitive, display a Michaelis constant (T4) of approximately 1 nM, increase about 3-fold in hypo- and virtually disappear in thyrotoxicosis. Extracts of calvaria had the lowest ORD activity, whereas tibial and femoral extracts had roughly three times as much. The absence of ORD activity in bone extracts from mice with targeted disruption of the Dio2 gene confirms the principal role of D2 in this tissue. In the MC3T3-E1 osteoblasts, D2 activity increased in a time-dependent manner after plating, and with the content of selenium in the media, reaching a maximum 5-7 d later as cells attained more than 90% confluence. In these cells D2 half-life is about 30-40 min, which is further accelerated by exposure to substrate and stabilized by the proteasome inhibitor, MG132. Treatment with vitamin D [1,25(OH)2VD]-induced D2 activity by 2- to 3-fold as early as 24 h, regardless of the level of cell confluence, but estradiol, PTH, forskolin, leptin, TNFalpha, TGFbeta, and dexamethasone did not affect D2. Given the role of D2 in other cell types and processes, it is likely that bone ORD not only plays a role in bone development and adult bone T3 homeostasis but also contributes to extrathyroidal T3 production and maintenance of serum T3.


Assuntos
Osso e Ossos/enzimologia , Iodeto Peroxidase/metabolismo , Osteoblastos/citologia , Osteoblastos/enzimologia , Vitamina D/análogos & derivados , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Meia-Vida , Iodeto Peroxidase/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Fatores de Tempo , Vitamina D/farmacologia , Iodotironina Desiodinase Tipo II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...