Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012768

RESUMO

Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.


Assuntos
Bacteriófago T4 , Endorribonucleases , Endorribonucleases/metabolismo , Escherichia coli/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Virais/metabolismo
2.
Foods ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203373

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 °C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 °C, and ~3 log10 at 4 °C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 °C. No survivors were detected after 4 and 6 h at 8 and 4 °C, respectively. Although at 22 °C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02). This, and the ability of VR26 to survive over a pH range of 3-11, indicates that VR26 could be used to control STEC O26:H11 in the food industry.

3.
Biochim Biophys Acta Gen Subj ; 1865(10): 129967, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324954

RESUMO

BACKGROUND: Bacterial viruses (bacteriophages or phages) have a lot of uncharacterized genes, which hinders the progress of their applied research. Functional characterization of these genes is often hampered by a lack of suitable methods for engineering of phage genomes. METHODS: Phages vB_EcoM_Alf5 (Alf5) and VB_EcoM_VpaE1 (VpaE1) were used as the model phages of Felixounovirus genus. The phage-coded properties were predicted by bioinformatics analysis. The 'pull-down' assay was used for detection of protein-protein interactions. Primer extension analysis was used for the DNA polymerase (DNAP) activity testing. Bacteriophage lambda Redγßα-assisted homologous recombination was used for construction of phage mutants. RESULTS: Bioinformatics analysis showed that felixounoviruses encode DNA polymerase, which is homologous to the T7 DNAP. We found that the Escherichia coli thioredoxin A (TrxA) in vitro interacts with the predicted DNAP of Alf5 phage (gp096) and enhances its activity. Phages Alf5 and VpaE1 do not grow on E. coli strains lacking trxA gene unless it is provided in trans. This feature was used for construction of the deletion/insertion mutants of non-essential genes of felixounoviruses. CONCLUSION: DNA replication of phages from Felixonuvirus genus depends on the host trxA, which therefore may be used as a molecular marker for their genome engineering. GENERAL SIGNIFICANCE: We present a proof-of-principle of a strategy for targeted engineering of bacteriophages of Felixounovirus genus. The method developed here will facilitate the basic and applied research of this unexplored phage group. Furthermore, detected functional interactions between the phage and host proteins will be significant for basic research of DNA replication.


Assuntos
Bacteriófagos/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Genética , Tiorredoxinas/genética , Biomarcadores
4.
Viruses ; 12(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340233

RESUMO

A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/fisiologia , Pantoea/virologia , Adaptação Biológica , Bacteriófagos/ultraestrutura , Temperatura Baixa , Genoma Viral , Genômica/métodos , Fases de Leitura Aberta , Filogenia , Siphoviridae
5.
Viruses ; 10(11)2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366363

RESUMO

A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G⁻C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.


Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , Pantoea/virologia , Bacteriófagos/ultraestrutura , Temperatura Baixa , Biologia Computacional , Genes Virais , Genoma Viral , Genômica/métodos , Guanosina/análogos & derivados , Guanosina/biossíntese , Especificidade de Hospedeiro , Família Multigênica , Filogenia , Proteômica/métodos , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Arch Virol ; 163(1): 105-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29018963

RESUMO

A novel low-temperature Escherichia coli phage vB_EcoS_NBD2 was isolated in Lithuania from agricultural soil. With an optimum temperature for plating around 20 °C, vB_EcoS_NBD2 efficiently produced plaques on Escherichia coli NovaBlue (DE3) at a temperature range of 10-30 °C, yet failed to plate at temperatures above 35 °C. Phage vB_EcoS_NBD2 virions have a siphoviral morphology with an isometric head (65 nm in diameter), and a non-contractile flexible tail (170 nm). The 51,802-bp genome of vB_EcoS_NBD2 has a G + C content of 49.8%, and contains 87 probable protein-encoding genes as well as 1 gene for tRNASer. Comparative sequence analysis revealed that 22 vB_EcoS_NBD2 ORFs encode unique proteins that have no reliable identity to database entries. Based on homology to biologically defined proteins and/or proteomics analysis, 36 vB_EcoS_NBD2 ORFs were given a putative functional annotation, including 20 genes coding for morphogenesis-related proteins and 13 associated with DNA metabolism. Phylogenetic analysis revealed that vB_EcoS_NBD2 belongs to the subfamily Tunavirinae, but cannot be assigned to any genus currently recognized by ICTV.


Assuntos
Colífagos/genética , Escherichia coli/virologia , Reparo do DNA , DNA Viral , Genoma Viral , Filogenia
7.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28122988

RESUMO

This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.


Assuntos
Arthrobacter/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Microbiologia do Solo , Bacteriófagos/ultraestrutura , Composição de Bases , Biologia Computacional , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Microscopia Eletrônica de Transmissão , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Proteínas da Cauda Viral/genética , Vírion/ultraestrutura
8.
Viruses ; 7(12): 6163-81, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633460

RESUMO

Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.


Assuntos
Colífagos/fisiologia , Escherichia coli/virologia , Especificidade de Hospedeiro , Myoviridae/fisiologia , Antígenos O/análise , Ligação Viral , Colífagos/química , Colífagos/genética , Colífagos/isolamento & purificação , Escherichia coli/química , Escherichia coli/genética , Genoma Viral , Genômica , Lipopolissacarídeos/análise , Myoviridae/química , Myoviridae/genética , Myoviridae/isolamento & purificação , Proteoma/análise , Proteômica , Temperatura , Vírion/ultraestrutura , Replicação Viral
9.
Arch Virol ; 160(5): 1367-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753428

RESUMO

The complete genome sequences of four low-temperature Escherichia coli-specific tevenviruses, vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, were determined. Genomic comparisons including recently described genomes of vb_EcoM-VR7 and JS98 as well as phage T4 allowed the identification of two genetic groups that were consistent with defined host-range phenotypes. Group A included the broad-host-range phages vb_EcoM-VR5 and JS98, while group B included vb_EcoM-VR7, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, which all had somewhat limited host ranges. All four sequenced phages had genomes that were similar in length (~170 kb) and GC content (~40 %), and, with the exception of vb_EcoM-VR5, at the nucleotide level, they were much more closely related to each other than either was to any other tevenvirus currently characterized. Nevertheless, the overall genome organization of vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26 was comparable to that seen in tevenviruses.


Assuntos
Colífagos/genética , Composição de Bases , Análise por Conglomerados , Colífagos/isolamento & purificação , Colífagos/fisiologia , Escherichia coli/virologia , Especificidade de Hospedeiro , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
10.
PLoS One ; 9(10): e111230, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333962

RESUMO

This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.


Assuntos
Sequência de Aminoácidos/genética , Arthrobacter/genética , Bacteriófagos/genética , Genoma Viral , Arthrobacter/virologia , Sequência Conservada , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
11.
Arch Virol ; 159(2): 327-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23948816

RESUMO

The bacteriophage T4 insertion-substitution (I/S) vector system has become one of the most important tools for the introduction of site-directed mutations into the T4 genome. In this study, we show that the I/S phage T4 K10 carries two point mutations within the gene for polynucleotide kinase pseT, resulting in amino acid substitutions G14D and R229H. The G14D mutation impairs 5'-kinase activity in vivo as well as in vitro and leads to diminished processing at secondary sites of several RegB-cleaved transcripts.


Assuntos
Bacteriófago T4/enzimologia , Bacteriófago T4/metabolismo , Mutação de Sentido Incorreto , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Substituição de Aminoácidos , Bacteriófago T4/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
12.
PLoS One ; 8(4): e60717, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593293

RESUMO

At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.


Assuntos
Klebsiella/virologia , Myoviridae/fisiologia , Bacteriólise , Ordem dos Genes , Genoma Viral , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Myoviridae/ultraestrutura , Nucleotídeos/metabolismo , Fases de Leitura Aberta , RNA de Transferência/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tropismo Viral , Vírion/ultraestrutura , Replicação Viral
13.
Arch Virol ; 157(12): 2431-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22907825

RESUMO

A proposed new genus of the family Myoviridae, "rV5-like viruses", includes two lytic bacteriophages: Escherichia coli O157: H7-specific bacteriophage rV5 and Salmonella phage PVP-SE1. Here, we present basic properties and genomic characterization of a novel rV5-like phage, vB_EcoM_FV3, which infects E. coli K-12-derived laboratory strains and replicates at high temperature (up to 47 °C). The 136,947-bp genome of vB_EcoM_FV3 contains 218 open reading frames and encodes 5 tRNAs. The genomic content and organization of vB_EcoM_FV3 is more similar to that of rV5 than to PVP-SE1, but all three phages share similar morphological characteristics and form a homogeneous phage group.


Assuntos
Escherichia coli K12/virologia , Myoviridae/classificação , Myoviridae/genética , Aderência Bacteriana , Temperatura Baixa , DNA Viral/genética , Escherichia coli K12/classificação , Regulação Viral da Expressão Gênica , Genoma Viral , Dados de Sequência Molecular , Myoviridae/fisiologia , Myoviridae/ultraestrutura , Fases de Leitura Aberta , Regiões Promotoras Genéticas , RNA Bacteriano/genética , RNA de Transferência/genética , Replicação Viral
14.
J Virol ; 86(9): 5406, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22492928

RESUMO

Despite the fact that multidrug-resistant Klebsiella sp. strains emerge rapidly (Xu J, et al., Adv. Mater. Res. 268-270:1954-1956, 2011) and bacteriophages have been reported to be useful in controlling these bacteria (Kumari S, Harjai K, Chhibber S, J. Med. Microbiol. 60:205-210, 2011), the complete genome sequences of only five Klebsiella phages (four siphoviruses and one myovirus) can be found in databases. In this paper, we report on the complete genome sequence of Klebsiella sp.-infecting bacteriophage vB_KleM_RaK2. With a genome size of 345,809 bp, this is the second largest myovirus and the largest Klebsiella phage sequenced to date. This phage differs substantially from other myoviruses since 411 out of 534 vB_KleM_RaK2 open reading frames have no known functions and lack any reliable database matches. Comparative analysis of the genome sequence of vB_KleM_RaK2 suggests that this phage forms a distinct phylogenetic branch within the family Myoviridae of tailed bacteriophages.


Assuntos
Bacteriófagos/genética , Genoma Viral , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Klebsiella/virologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia
15.
Arch Virol ; 156(10): 1913-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21830070

RESUMO

The complete genome sequence of the T4-related low-temperature Escherichia coli bacteriophage vB_EcoM-VR7 was determined. The genome sequence is 169,285 bp long, with a G+C content of 40.3%. Overall, 95% of the phage genome is coding. It encodes 293 putative protein-encoding open reading frames (ORFs) and tRNA(Met). More than half (59%) of the genomic DNA lacks significant homology with the DNA of T4, but once translated, 72% of the vB_EcoM-VR7 genome (211 ORFs) encodes protein homologues of T4 genes. Overall, 46 vB_EcoM-VR7 ORFs have no homologues in T4 but are derived from other T4-related phages, nine ORFs show similarities to bacterial or non-T4-related phage genes, and 27 ORFs are unique to vB_EcoM-VR7. This phage lacks several T4 enzymes involved in host DNA degradation; however, there is extensive representation of the DNA replication, recombination and repair enzymes as well as the viral capsid and tail structural genes.


Assuntos
Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Escherichia coli/virologia , Genoma Viral , Esgotos/virologia , Bacteriófagos/classificação , Sequência de Bases , Dados de Sequência Molecular , Fases de Leitura Aberta , Temperatura , Proteínas Virais/genética
16.
Virology ; 375(2): 342-53, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18395239

RESUMO

Sequence-specific endoribonuclease RegB of bacteriophage T4 cleaves early phage mRNAs and facilitates the transition between early and subsequent phases of T4 gene expression. The great majority of RegB targets have been identified in the intergenic regions of T4 transcripts, frequently in the Shine-Dalgarno sequences. Here we show that localization of RegB targets is not restricted to intergenic regions of mRNA. We detected 30 intragenic RegB sites in T4 transcripts that are differently susceptible to cleavage. Four RegB-processed mRNAs were previously shown to undergo further processing at so-called "secondary sites". We have found three additional transcripts carrying clear targets for both RegB and another endoribonuclease. We show that secondary cuts within RegB-processed T4 mRNAs are generated mainly by Escherichia coli RNase G, but that in some cases RNase E can recognize the same targets. Using plasmid-phage systems we demonstrate that T4 infection favours cleavage by the host endoribonucleases at these sites.


Assuntos
Bacteriófago T4/fisiologia , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Precursores de RNA/genética , Proteínas Virais/genética , Sequência de Bases , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Precursores de RNA/metabolismo , Proteínas Virais/metabolismo
17.
Mol Microbiol ; 64(2): 421-34, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17371501

RESUMO

The temporally regulated transcription program of bacteriophage T4 relies upon the sequential utilization of three classes of promoters: early, middle and late. Here we show that middle promoters constitute perhaps the largest and the most diverse class of T4 promoters. In addition to 45 T4 middle promoters known to date, we mapped 13 new promoters, 10 of which deviate from the consensus MotA box, with some of them having no obvious match to it. So, 30 promoters of 58 identified now deviate from the consensus sequence deduced previously. In spite of the differences in their sequences, the in vivo activities of these T4 middle promoters were demonstrated to be dependent on both activators, MotA and AsiA. Traditionally, the MotA box was restricted to a 9 bp sequence with the highly conserved motif TGCTT. New logo based on the sequences of currently known middle promoters supports the conclusion that the consensus MotA box is comprised of 10 bp with the highly conserved central motif GCT. However, some apparently good matches to the consensus of middle promoters do not produce transcripts either in vivo or in vitro, indicating that the consensus sequence alone does not fully define a middle promoter.


Assuntos
Bacteriófago T4/genética , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas/genética , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Genes Virais , Genoma Viral/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo
18.
Virology ; 344(2): 378-90, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16225899

RESUMO

Early gene expression in bacteriophage T4 is controlled primarily by the unique early promoters, while T4-encoded RegB endoribonuclease promotes degradation of many early messages contributing to the rapid shift of gene expression from the early to middle stages. The regulatory region for the genes clustered upstream of DNA ligase gene 30 of T4 was known to carry two strong early promoters and two putative RegB sites. Here, we present the comparative analysis of the regulatory events in this region of 16 T4-type bacteriophages. The regulatory elements for control of this gene cluster, such as rho-independent terminator, at least one early promoter, the sequence for stem-loop structure, and the RegB cleavage sites have been found to be conserved in the phages studied. Also, we present experimental evidence that the initial cleavage by RegB of phages TuIa and RB69 enables degradation of early phage mRNAs by the major Escherichia coli endoribonuclease, RNase E.


Assuntos
Bacteriófago T4/classificação , Bacteriófago T4/genética , DNA Ligases/genética , Regulação Viral da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Viral/metabolismo , Transcrição Gênica , Sequência de Bases , Genes Virais/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , RNA Viral/genética
19.
Nucleic Acids Res ; 32(18): 5582-95, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15486207

RESUMO

The RegB endoribonuclease encoded by bacteriophage T4 is a unique sequence-specific nuclease that cleaves in the middle of GGAG or, in a few cases, GGAU tetranucleotides, preferentially those found in the Shine-Dalgarno regions of early phage mRNAs. In this study, we examined the primary structures and functional properties of RegB ribonucleases encoded by T4-related bacteriophages. We show that all but one of 36 phages tested harbor the regB gene homologues and the similar signals for transcriptional and post-transcriptional autogenous regulation of regB expression. Phage RB49 in addition to gpRegB utilizes Escherichia coli endoribonuclease E for the degradation of its transcripts for gene regB. The deduced primary structure of RegB proteins of 32 phages studied is almost identical to that of T4, while the sequences of RegB encoded by phages RB69, TuIa and RB49 show substantial divergence from their T4 counterpart. Functional studies using plasmid-phage systems indicate that RegB nucleases of phages T4, RB69, TuIa and RB49 exhibit different activity towards GGAG and GGAU motifs in the specific locations. We expect that the availability of the different phylogenetic variants of RegB may help to localize the amino acid determinants that contribute to the specificity and cleavage efficiency of this processing enzyme.


Assuntos
Bacteriófago T4/enzimologia , Endorribonucleases/química , Endorribonucleases/metabolismo , Sequência de Aminoácidos , Bacteriófago T4/classificação , Bacteriófago T4/genética , Sequência de Bases , Endorribonucleases/classificação , Endorribonucleases/genética , Regulação Viral da Expressão Gênica , Genes Virais/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Transcrição Gênica/genética
20.
J Mol Biol ; 327(2): 335-46, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12628241

RESUMO

Bacteriophage T4 middle-mode transcription requires Escherichia coli RNA polymerase, phage-encoded transcriptional activator MotA and co-activator AsiA that form a complex at a middle promoter DNA. T4 middle promoters have been defined by a consensus sequence deduced from the list of 14 middle promoters identified in earlier studies. To date, 33 middle promoters have been mapped on the T4 genome. Of these, 12 contain differences even at the highly conserved positions of the consensus sequence. In the T4 prereplicative gene cluster between genes e and rpbA, we have identified 12 new middle promoters, most of which contain differences from the consensus sequence deduced previously. Analysis of base conservation in the different sequence positions of new middle promoters, as well as those identified previously, revealed some new features of middle T4 promoters. We propose to define these promoters by a MotA box (a/t)(a/t)(a/t)TGCTTtA centred at the position -30, the sequence TAtaAT centred at -10 relative to the transcriptional start site, and the spacer region of 12(+/-1) base-pairs between them.


Assuntos
Bacteriófago T4/genética , Sequência Consenso/genética , Proteínas de Ligação a DNA/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Proteínas Virais/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Dados de Sequência Molecular , RNA Bacteriano/metabolismo , Homologia de Sequência do Ácido Nucleico , Fator sigma/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...