Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 355(6323): 358, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28126781

RESUMO

Terrer et al (Reports, 1 July 2016, p. 72) used meta-analysis of carbon dioxide (CO2) enrichment experiments as evidence of an interaction between mycorrhizal symbiosis and soil nitrogen availability. We challenge their database and biomass as the response metric and, hence, their recommendation that incorporation of mycorrhizae in models will improve predictions of terrestrial ecosystem responses to increasing atmospheric CO2.


Assuntos
Micorrizas , Nitrogênio , Biomassa , Dióxido de Carbono , Ecossistema , Solo
2.
Ecology ; 93(8): 1816-29, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928411

RESUMO

Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (< 1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3-18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C:N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N x ha(-1) x yr(-1) above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer addition.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Nitrogênio/química , Altitude , Amônia/química , Vazamento de Resíduos Químicos , Nitratos/química , Isótopos de Nitrogênio , Chuva , Temperatura
3.
Oecologia ; 146(2): 318-28, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16041614

RESUMO

Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Clima , Ecossistema , Raízes de Plantas/metabolismo , Solo/análise , Árvores/metabolismo , Biomassa , Ergosterol/análise , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Microbiologia do Solo , Árvores/química , Árvores/efeitos dos fármacos
4.
Microb Ecol ; 48(2): 218-29, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15546042

RESUMO

Large regions of temperate forest are subject to elevated atmospheric nitrogen (N) deposition which can affect soil organic matter dynamics by altering mass loss rates, soil respiration, and dissolved organic matter production. At present there is no general model that links these responses to changes in the organization and operation of microbial decomposer communities. Toward that end, we studied the response of litter and soil microbial communities to high levels of N amendment (30 and 80 kg ha(-1) yr(-1)) in three types of northern temperate forest: sugar maple/basswood (SMBW), sugar maple/red oak (SMRO), and white oak/black oak (WOBO). We measured the activity of extracellular enzymes (EEA) involved directly in the oxidation of lignin and humus (phenol oxidase, peroxidase), and indirectly, through the production of hydrogen peroxide (glucose oxidase, glyoxal oxidase). Community composition was analyzed by extracting and quantifying phospholipid fatty acids (PLFA) from soils. Litter EEA responses at SMBW sites diverged from those at oak-bearing sites (SMRO, BOWO), but the changes were not statistically significant. For soil, EEA responses were consistent across forests types: phenol oxidase and peroxidase activities declined as a function of N dose (33-73% and 5-41%, respectively, depending on forest type); glucose oxidase and glyoxal oxidase activities increased (200-400% and 150-300%, respectively, depending on forest type). Principal component analysis (PCA) ordinated forest types and treatment responses along two axes; factor 1 (44% of variance) was associated with phenol oxidase and peroxidase activities, factor 2 (31%) with glucose oxidase. Microbial biomass did not respond to N treatment, but nine of the 23 PLFA that formed >1 mol% of total biomass showed statistically significant treatment responses. PCA ordinated forest types and treatment responses along three axes (36%, 26%, 12% of variance). EEA factors 1 and 2 correlated negatively with PLFA factor 1 ( r = -0.20 and -0.35, respectively, n = 108) and positively with PLFA factor 3 ( r = +0.36 and +0.20, respectively, n = 108). In general, EEA responses were more strongly tied to changes in bacterial PLFA than to changes in fungal PLFA. Collectively, our data suggests that N inhibition of oxidative activity involves more than the repression of ligninase expression by white-rot basidiomycetes.


Assuntos
Ecossistema , Enzimas/metabolismo , Nitrogênio/análise , Microbiologia do Solo , Solo/análise , Árvores , Análise de Variância , Michigan , Fosfolipídeos/análise , Análise de Componente Principal
5.
Oecologia ; 124(3): 432-445, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28308783

RESUMO

It is uncertain whether elevated atmospheric CO2 will increase C storage in terrestrial ecosystems without concomitant increases in plant access to N. Elevated CO2 may alter microbial activities that regulate soil N availability by changing the amount or composition of organic substrates produced by roots. Our objective was to determine the potential for elevated CO2 to change N availability in an experimental plant-soil system by affecting the acquisition of root-derived C by soil microbes. We grew Populus tremuloides (trembling aspen) cuttings for 2 years under two levels of atmospheric CO2 (36.7 and 71.5 Pa) and at two levels of soil N (210 and 970 µg N g-1). Ambient and twice-ambient CO2 concentrations were applied using open-top chambers, and soil N availability was manipulated by mixing soils differing in organic N content. From June to October of the second growing season, we measured midday rates of soil respiration. In August, we pulse-labeled plants with 14CO2 and measured soil 14CO2 respiration and the 14C contents of plants, soils, and microorganisms after a 6-day chase period. In conjunction with the August radio-labeling and again in October, we used 15N pool dilution techniques to measure in situ rates of gross N mineralization, N immobilization by microbes, and plant N uptake. At both levels of soil N availability, elevated CO2 significantly increased whole-plant and root biomass, and marginally increased whole-plant N capital. Significant increases in soil respiration were closely linked to increases in root biomass under elevated CO2. CO2 enrichment had no significant effect on the allometric distribution of biomass or 14C among plant components, total 14C allocation belowground, or cumulative (6-day) 14CO2 soil respiration. Elevated CO2 significantly increased microbial 14C contents, indicating greater availability of microbial substrates derived from roots. The near doubling of microbial 14C contents at elevated CO2 was a relatively small quantitative change in the belowground C cycle of our experimental system, but represents an ecologically significant effect on the dynamics of microbial growth. Rates of plant N uptake during both 6-day periods in August and October were significantly greater at elevated CO2, and were closely related to fine-root biomass. Gross N mineralization was not affected by elevated CO2. Despite significantly greater rates of N immobilization under elevated CO2, standing pools of microbial N were not affected by elevated CO2, suggesting that N was cycling through microbes more rapidly. Our results contained elements of both positive and negative feedback hypotheses, and may be most relevant to young, aggrading ecosystems, where soil resources are not yet fully exploited by plant roots. If the turnover of microbial N increases, higher rates of N immobilization may not decrease N availability to plants under elevated CO2.

6.
Tree Physiol ; 20(15): 1019-28, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11305456

RESUMO

Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.


Assuntos
Árvores/fisiologia , Biomassa , Dióxido de Carbono/fisiologia , Variação Genética/fisiologia , Genótipo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/genética , Árvores/crescimento & desenvolvimento
7.
Am J Bot ; 86(8): 1154-9, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10449395

RESUMO

The carbon/nutrient balance hypothesis suggests that leaf carbon to nitrogen ratios influence the synthesis of secondary compounds such as condensed tannins. We studied the effects of rising atmospheric carbon dioxide on carbon to nitrogen ratios and tannin production. Six genotypes of Populus tremuloides were grown under elevated and ambient CO(2) partial pressure and high- and low-fertility soil in field open-top chambers in northern lower Michigan, USA. During the second year of exposure, leaves were harvested three times (June, August, and September) and analyzed for condensed tannin concentration. The carbon/nutrient balance hypothesis was supported overall, with significantly greater leaf tannin concentration at high CO(2) and low soil fertility compared to ambient CO(2) and high soil fertility. However, some genotypes increased tannin concentration at elevated compared to ambient CO(2), while others showed no CO(2) response. Performance of lepidopteran leaf miner (Phyllonorycter tremuloidiella) larvae feeding on these plants varied across genotypes, CO(2), and fertility treatments. These results suggest that with rising atmospheric CO(2), plant secondary compound production may vary within species. This could have consequences for plant-herbivore and plant-microbe interactions and for the evolutionary response of this species to global climate change.

8.
Tree Physiol ; 17(7): 421-7, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-14759833

RESUMO

Accurate estimates of root respiration are crucial to predicting belowground C cycling in forest ecosystems. Inhibition of respiration has been reported as a short-term response of plant tissue to elevated measurement [CO(2)]. We sought to determine if measurement [CO(2)] affected root respiration in samples from mature sugar maple (Acer saccharum Marsh.) forests and to assess possible errors associated with root respiration measurements made at [CO(2)]s lower than that typical of the soil atmosphere. Root respiration was measured as both CO(2) production and O(2) consumption on excised fine roots ( 20,000 micro l l(-1). Root respiration was significantly affected by the [CO(2)] at which measurements were made for both CO(2) production and O(2) consumption. Root respiration was most sensitive to [CO(2)] near and below normal soil concentrations (< 1500 micro l l(-1)). Respiration rates changed little at [CO(2)]s above 3000 micro l l(-1) and were essentially constant above 6000 micro l l(-1) CO(2). These findings call into question estimates of root respiration made at or near atmospheric [CO(2)], suggesting that they overestimate actual rates in the soil. Our results indicate that sugar maple root respiration at atmospheric [CO(2)] (350 micro l l(-1)) is about 139% of that at soil [CO(2)]. Although the causal mechanism remains unknown, the increase in root respiration at low measurement [CO(2)] is significant and should be accounted for when estimating or modeling root respiration. Until the direct effect of [CO(2)] on root respiration is fully understood, we recommend making measurements at a [CO(2)] representative of, or higher than, soil [CO(2)]. In all cases, the [CO(2)] at which measurements are made and the [CO(2)] typical of the soil atmosphere should be reported.

9.
Tree Physiol ; 16(8): 719-25, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14871695

RESUMO

We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...