Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35887695

RESUMO

This protocol aims to profile the pharmacokinetics of metformin and Andrographis paniculata (AP) and continue with untargeted pharmacometabolomics analysis on pre-dose and post-dose samples to characterise the metabolomics profiling associated with the human metabolic pathways. This is a single-centre, open-labelled, three periods, crossover, randomised-controlled, single-dose oral administration pharmacokinetics and metabolomics trial of metformin 1000 mg (n = 18), AP 1000 mg (n = 18), or AP 2000 mg (n = 18) in healthy volunteers under the fasting condition. Subjects will be screened according to a list of inclusion and exclusion criteria. Investigational products will be administered according to the scheduled timeline. Vital signs and adverse events will be monitor periodically, and standardized meals will be provided to the subjects. Fifteen blood samples will be collected over 24 h, and four urine samples will be collected within a 12 h period. Onsite safety monitoring throughout the study and seven-day phone call safety follow-up will be compiled after the last dose of administration. The plasma samples will be analysed for the pharmacokinetics parameters to estimate the drug maximum plasma concentration. Untargeted metabolomic analysis between pre-dose and maximum plasma concentration (Cmax) samples will be performed for metabolomic profiling to identify the dysregulation of human metabolic pathways that link to the pharmacodynamics effects. The metformin arm will focus on the individualised Cmax plasma concentration for metabolomics study and used as a model drug. After this, an investigation of the dose-dependent effects will be performed between pre-dose samples and median Cmax concentration samples in the AP 1000 mg and AP 2000 mg arms for metabolomics study. The study protocol utilises a crossover study design to incorporate a metabolomics-based study into pharmacokinetics trial in the drug development program. The combination analyses will complement the interpretation of pharmacological effects according to the bioavailability of the drug.

2.
Pharmaceutics ; 14(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745841

RESUMO

Pharmacometabolomics in early phase clinical trials demonstrate the metabolic profiles of a subject responding to a drug treatment in a controlled environment, whereas pharmacokinetics measure the drug plasma concentration in human circulation. Application of the personalized peak plasma concentration from pharmacokinetics in pharmacometabolomic studies provides insights into drugs' pharmacological effects through dysregulation of metabolic pathways or pharmacodynamic biomarkers. This proof-of-concept study integrates personalized pharmacokinetic and pharmacometabolomic approaches to determine the predictive pharmacodynamic response of human metabolic pathways for type 2 diabetes. In this study, we use metformin as a model drug. Metformin is a first-line glucose-lowering agent; however, the variation of metabolites that potentially affect the efficacy and safety profile remains inconclusive. Seventeen healthy subjects were given a single dose of 1000 mg of metformin under fasting conditions. Fifteen sampling time-points were collected and analyzed using the validated bioanalytical LCMS method for metformin quantification in plasma. The individualized peak-concentration plasma samples determined from the pharmacokinetic parameters calculated using Matlab Simbiology were further analyzed with pre-dose plasma samples using an untargeted metabolomic approach. Pharmacometabolomic data processing and statistical analysis were performed using MetaboAnalyst with a functional meta-analysis peaks-to-pathway approach to identify dysregulated human metabolic pathways. The validated metformin calibration ranged from 80.4 to 2010 ng/mL for accuracy, precision, stability and others. The median and IQR for Cmax was 1248 (849-1391) ng/mL; AUC0-infinity was 9510 (7314-10,411) ng·h/mL, and Tmax was 2.5 (2.5-3.0) h. The individualized Cmax pharmacokinetics guided the untargeted pharmacometabolomics of metformin, suggesting a series of provisional predictive human metabolic pathways, which include arginine and proline metabolism, branched-chain amino acid (BCAA) metabolism, glutathione metabolism and others that are associated with metformin's pharmacological effects of increasing insulin sensitivity and lipid metabolism. Integration of pharmacokinetic and pharmacometabolomic approaches in early-phase clinical trials may pave a pathway for developing targeted therapy. This could further reduce variability in a controlled trial environment and aid in identifying surrogates for drug response pathways, increasing the prediction of responders for dose selection in phase II clinical trials.

3.
Pharmaceuticals (Basel) ; 11(3)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049953

RESUMO

Malaysia is a multi-ethnic society whereby the impact of pharmacogenetic differences between ethnic groups may contribute significantly to variability in clinical therapy. One of the leading causes of mortality in Malaysia is cardiovascular disease (CVD), which accounts for up to 26% of all hospital deaths annually. Clopidogrel is used as an adjunct treatment in the secondary prevention of cardiovascular events. CYP2C19 plays an integral part in the metabolism of clopidogrel to the active metabolite clopi-H4. However, CYP2C19 genetic polymorphism, prominent in Malaysians, could influence target clopi-H4 plasma concentrations for clinical efficacy. This study addresses how inter-ethnicity variability within the Malaysian population impacts the attainment of clopi-H4 target plasma concentration under different CYP2C19 polymorphisms through pharmacokinetic (PK) modelling. We illustrated a statistically significant difference (P < 0.001) in the clopi-H4 Cmax between the extensive metabolisers (EM) and poor metabolisers (PM) phenotypes with either Malay or Malaysian Chinese population groups. Furthermore, the number of PM individuals with peak clopi-H4 concentrations below the minimum therapeutic level was partially recovered using a high-dose strategy (600 mg loading dose followed by a 150 mg maintenance dose), which resulted in an approximate 50% increase in subjects attaining the minimum clopi-H4 plasma concentration for a therapeutic effect.

4.
J Pharm Sci ; 107(8): 2236-2250, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29626533

RESUMO

Ivermectin has demonstrated many successes in the treatment of a range of nematode infections. Considering the increase in malaria resistance, attention has turned toward ivermectin as a candidate for repurposing for malaria. This study developed and validated an ivermectin physiology-based pharmacokinetic model in healthy adults (20-50 years), pediatric (3-5 years/15-25 kg) subjects, and a representative adult malaria population group (Thailand). Dosing optimization demonstrating a twice-daily dose for 3- or 5-day regimens would provide a time above the LC50 of more than 7 days for adult and pediatric subjects. Furthermore, to address the occurrence of CYP450 induction that is often encountered with antiretroviral agents, simulated drug-drug interaction studies with efavirenz highlighted that a 1-mg/kg once-daily dose for 5 days would counteract the increased ivermectin hepatic clearance and enable a time above LC50 of 138.8 h in adults and 141.2 h in pediatric subjects. It was also demonstrated that dosage regimen design would require consideration of the age-weight geographical relationship of the subjects, with a dosage regimen for a representative Thailand population group requiring at least a single daily dose for 5 days to maintain ivermectin plasma concentrations and a time above LC50 similar to that in healthy adults.


Assuntos
Antiparasitários/administração & dosagem , Antiparasitários/farmacocinética , Reposicionamento de Medicamentos , Ivermectina/administração & dosagem , Ivermectina/farmacocinética , Malária/tratamento farmacológico , Adulto , Antiparasitários/uso terapêutico , Pré-Escolar , Ensaios Clínicos como Assunto , Simulação por Computador , Esquema de Medicação , Feminino , Humanos , Ivermectina/uso terapêutico , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Tailândia/epidemiologia , Adulto Jovem
5.
Eur J Pharm Sci ; 119: 90-101, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635009

RESUMO

Lumefantrine is a widely used antimalarial in children in sub-Saharan Africa and is predominantly metabolised by CYP3A4. The concomitant use of lumefantrine with the antiretroviral efavirenz, which is metabolised by CYP2B6 and is an inducer of CYP3A4, increases the risk of lumefantrine failure and can result in an increased recrudescence rate in HIV-infected children. This is further confounded by CYP2B6 being highly polymorphic resulting in a 2-3 fold higher efavirenz plasma concentration in polymorphic subjects, which enhances the potential for an efavirenz-lumefantrine drug-drug interaction (DDI). This study developed a population-based PBPK model capable of predicting the impact of efavirenz-mediated DDIs on lumefantrine pharmacokinetics in African paediatric population groups, which also considered the polymorphic nature of CYP2B6. The validated model demonstrated a significant difference in lumefantrine target day 7 concentrations (Cd7) in the presence and absence of efavirenz and confirmed the capability of efavirenz to initiate this DDI. This was more apparent in the *6/*6 compared to *1/*1 population group and resulted in a significantly lower (P < 0.001) lumefantrine Cd7. A prospective change in dosing schedule from 3-days to 7-days resulted in a greater number of *6/*6 subjects (28-57%) attaining the target Cd7 across age bands (0.25-13 years), with the greatest increase evident in the 1-4 year old group (3-day: 1%; 7-day: 28%).


Assuntos
Fármacos Anti-HIV , Antimaláricos , Benzoxazinas , Citocromo P-450 CYP2B6/genética , Etanolaminas , Fluorenos , Infecções por HIV , Malária , Adolescente , Adulto , Alcinos , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Antimaláricos/farmacocinética , Antimaláricos/farmacologia , Benzoxazinas/farmacocinética , Benzoxazinas/farmacologia , Criança , Pré-Escolar , Simulação por Computador , Ciclopropanos , Interações Medicamentosas , Etanolaminas/farmacocinética , Etanolaminas/farmacologia , Fluorenos/farmacocinética , Fluorenos/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Humanos , Lactente , Lumefantrina , Malária/tratamento farmacológico , Malária/genética , Malária/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Polimorfismo Genético , Adulto Jovem
6.
Pharmaceutics ; 10(1)2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29342085

RESUMO

Central nervous system drug discovery and development is hindered by the impermeable nature of the blood-brain barrier. Pharmacokinetic modeling can provide a novel approach to estimate CNS drug exposure; however, existing models do not predict temporal drug concentrations in distinct brain regions. A rat CNS physiologically based pharmacokinetic (PBPK) model was developed, incorporating brain compartments for the frontal cortex (FC), hippocampus (HC), "rest-of-brain" (ROB), and cerebrospinal fluid (CSF). Model predictions of FC and HC Cmax, tmax and AUC were within 2-fold of that reported for carbamazepine and phenytoin. The inclusion of a 30% coefficient of variation on regional brain tissue volumes, to assess the uncertainty of regional brain compartments volumes on predicted concentrations, resulted in a minimal level of sensitivity of model predictions. This model was subsequently extended to predict human brain morphine concentrations, and predicted a ROB Cmax of 21.7 ± 6.41 ng/mL when compared to "better" (10.1 ng/mL) or "worse" (29.8 ng/mL) brain tissue regions with a FC Cmax of 62.12 ± 17.32 ng/mL and a HC Cmax of 182.2 ± 51.2 ng/mL. These results indicate that this simplified regional brain PBPK model is useful for forward prediction approaches in humans for estimating regional brain drug concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...