Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(10): 8818-8826, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29464951

RESUMO

Because of their full compatibility with the modern Si-based technology, the HfO2-based ferroelectric films have recently emerged as viable candidates for application in nonvolatile memory devices. However, despite significant efforts, the mechanism of the polarization switching in this material is still under debate. In this work, we elucidate the microscopic nature of the polarization switching process in functional Hf0.5Zr0.5O2-based ferroelectric capacitors during its operation. In particular, the static domain structure and its switching dynamics following the application of the external electric field have been monitored with the advanced piezoresponse force microscopy (PFM) technique providing a nm resolution. Separate domains with strong built-in electric field have been found. Piezoresponse mapping of pristine Hf0.5Zr0.5O2 films revealed the mixture of polar phase grains and regions with low piezoresponse as well as the continuum of polarization orientations in the grains of polar orthorhombic phase. PFM data combined with the structural analysis of pristine versus trained film by plan-view transmission electron microscopy both speak in support of a monoclinic-to-orthorhombic phase transition in ferroelectric Hf0.5Zr0.5O2 layer during the wake-up process under an electrical stress.

2.
Nanoscale Res Lett ; 11(1): 147, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26979725

RESUMO

Crossbar resistive switching devices down to 40 × 40 nm(2) in size comprising 3-nm-thick HfO2 layers are forming-free and exhibit up to 10(5) switching cycles. Four-nanometer-thick devices display the ability of gradual switching in both directions, thus emulating long-term potentiation/depression properties akin to biological synapses. Both forming-free and gradual switching properties are modeled in terms of oxygen vacancy generation in an ultrathin HfO2 layer. By applying the voltage pulses to the opposite electrodes of nanodevices with the shape emulating spikes in biological neurons, spike-timing-dependent plasticity functionality is demonstrated. Thus, the fabricated memristors in crossbar geometry are promising candidates for hardware implementation of hybrid CMOS-neuron/memristor-synapse neural networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...