Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(9): 1313-1326, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27184122

RESUMO

Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.


Assuntos
Síndrome de DiGeorge/genética , Proteínas Nucleares/genética , Animais , Cálcio/metabolismo , Síndrome de DiGeorge/metabolismo , Modelos Animais de Doenças , Haploinsuficiência , Hipocampo/metabolismo , Humanos , Memória de Curto Prazo/fisiologia , Camundongos , Mitocôndrias/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ribonucleoproteínas , Proteínas Ribossômicas , Esquizofrenia/genética
2.
Neuroscience ; 151(2): 476-88, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18082964

RESUMO

The phosphatidylinositol 3-kinase (PI3K) signaling pathway modulates growth, proliferation and cell survival in diverse tissue types and plays specialized roles in the nervous system including influences on neuronal polarity, dendritic branching and synaptic plasticity. The tumor-suppressor phosphatase with tensin homology (PTEN) is the central negative regulator of the PI3K pathway. Germline PTEN mutations result in cancer predisposition, macrocephaly and benign hamartomas in many tissues, including Lhermitte-Duclos disease, a cerebellar growth disorder. Neurological abnormalities including autism, seizures and ataxia have been observed in association with inherited PTEN mutation with variable penetrance. It remains unclear how loss of PTEN activity contributes to neurological dysfunction. To explore the effects of Pten deficiency on neuronal structure and function, we analyzed several ultra-structural features of Pten-deficient neurons in Pten conditional knockout mice. Using Golgi stain to visualize full neuronal morphology, we observed that increased size of nuclei and somata in Pten-deficient neurons was accompanied by enlarged caliber of neuronal projections and increased dendritic spine density. Electron microscopic evaluation revealed enlarged abnormal synaptic structures in the cerebral cortex and cerebellum. Severe myelination defects included thickening and unraveling of the myelin sheath surrounding hypertrophic axons in the corpus callosum. Defects in myelination of axons of normal caliber were observed in the cerebellum, suggesting intrinsic abnormalities in Pten-deficient oligodendrocytes. We did not observe these abnormalities in wild-type or conditional Pten heterozygous mice. Moreover, conditional deletion of Pten drastically weakened synaptic transmission and synaptic plasticity at excitatory synapses between CA3 and CA1 pyramidal neurons in the hippocampus. These data suggest that Pten is involved in mechanisms that control development of neuronal and synaptic structures and subsequently synaptic function.


Assuntos
Química Encefálica/genética , Deleção Cromossômica , Cromossomos de Mamíferos/fisiologia , Bainha de Mielina/fisiologia , Plasticidade Neuronal/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Contagem de Células , Nucléolo Celular/genética , Nucléolo Celular/fisiologia , Cromossomos de Mamíferos/genética , Eletrofisiologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/fisiologia , Hipocampo/fisiologia , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , Bainha de Mielina/genética , Bainha de Mielina/patologia , Plasticidade Neuronal/genética , Neurônios/fisiologia , Neurônios/ultraestrutura , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Frações Subcelulares/fisiologia , Sinapses/genética , Sinapses/ultraestrutura , Transmissão Sináptica/genética
3.
Nat Neurosci ; 4(7): 711-7, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11426227

RESUMO

Controversy exists regarding the site of modification of synaptic transmission during long-term plasticity in the mammalian hippocampus. Here we used a fluorescent marker of presynaptic activity, FM 1-43, to directly image changes in presynaptic function during both short-term and long-term forms of plasticity at presynaptic boutons of CA3-CA1 excitatory synapses in acute hippocampal slices. We demonstrated enhanced presynaptic function during long-term potentiation (LTP) induced either chemically (with tetraethylammonium), or by high-frequency (200-Hz) electrical stimulation. Both of these forms of LTP required activation of L-type voltage-gated calcium channels and NMDA receptors in the postsynaptic CA1 neuron. These results thus implied that a long-lasting increase in the efficacy of synaptic transmission is likely to depend, at least in part, on enhanced transmitter release from the presynaptic neuron.


Assuntos
Plasticidade Neuronal , Terminações Pré-Sinápticas/fisiologia , Animais , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores , Corantes Fluorescentes , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Técnicas In Vitro , Potenciação de Longa Duração , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Compostos de Piridínio , Compostos de Amônio Quaternário
4.
Membr Cell Biol ; 12(4): 441-51, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-10367563

RESUMO

Using the method of isometric tension measurement in isolated blood vessels, we investigated some mechanisms of action of high calcium concentrations (>3 mM) on the mechanical activity of small branches of the rat mesenteric artery. Calcium in concentrations up to 30 mM caused relaxation of the arteries (calcium relaxation). The amplitude of the effect decreased in the presence of ouabain (10(-4) M), tetraethylammonium (10(-3) M), charibdotoxin (10(-7) M) and in the potassium-free external solution in intact and denuded rings. Glibenclamide (10(-6) M), 4-aminopyridine (10(-3) M), barium (10(-3) M) and cesium (2.10(-2) M) were inefficient. Calcium relaxation of intact vessels was impaired in the presence of N(omega)-nitro-L-arginine (10(-4) M) or methylene blue (10(-4) M) but not in the presence of indomethacin (10(-5) M). The attenuation of calcium relaxation to the same extent was observed in denuded mesenteric arteries. We conclude that calcium can cause relaxation of vascular smooth muscle cells by two mechanisms. The first is mediated via the cell membrane hyperpolarization due to the activation of Na+/K(+)-ATPase and Ca(2+)-activated potassium channels. The second mechanism is endothelium-mediated and depends on the nitrogen monoxide-guanylate cyclase pathway.


Assuntos
Cálcio/metabolismo , Endotélio Vascular/metabolismo , Animais , Cloreto de Cálcio/farmacologia , Relação Dose-Resposta a Droga , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Masculino , Ouabaína/farmacologia , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA