Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 94(12): e10827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514831

RESUMO

Removal of heavy metal ions, in particular, divalent nickel ions from natural and wastewater, is of great importance for the environment. Nickel (II) ions are very toxic and provoke many diseases. The purpose of this work was to study the possibility of removing toxic nickel (II) ions from polluted water using an iron (III) chloride (FeCl3) coagulant. It is shown that the removal of nickel ions from aqueous solution by iron (III) hydroxide precipitate formed during the coagulation process at pH 7 and 8 is described with satisfactory accuracy by the classical adsorption isotherms of Freundlich, Langmuir, and Dubinin-Radushkevich. The studies performed with the use of X-ray powder diffraction and thermal analyses, IR, Raman, and Mössbauer spectroscopy have shown that the uptake of nickel ions by iron (III) hydroxide precipitate is due to simple physical adsorption and is not accompanied by the formation of mixed iron and nickel compounds. No alloying of the formed iron (III) hydroxide precipitate with nickel ions takes place either. The formed iron (III) hydroxide precipitate is a two-line ferrihydrite having the gross formula Fe2 O3 × 3H2 O. Its sorption capacity for nickel ions is almost an order of magnitude higher than that of some mineral and carbon sorbents, and at pH 7 and 8, it is 60.5 and 141.9 mg/g, respectively. PRACTITIONER POINTS: Coagulant FeCl3 cleans contaminated solutions from Ni(II) ions. Iron (III) hydroxide precipitated at pH 7 and 8 is a two-line ferrihydrite Fe2 O3  × 3H2 O. Removing of Ni(II) ions is described by classical adsorption isotherms. The most complete removal of Ni(II) ions occurs at pH = 8.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Níquel/química , Cloretos , Cinética , Temperatura , Compostos Férricos/química , Adsorção , Íons , Ferro , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
2.
Probl Endokrinol (Mosk) ; 66(4): 24-34, 2020 09 01.
Artigo em Russo | MEDLINE | ID: mdl-33351356

RESUMO

About 5-10% of malignant neoplasms (MN) are hereditary. Carriers of mutations associated with hereditary tumor syndromes (HTS) are at high risk of developing tumors in childhood and young age and synchronous and metachronous multiple tumors. At the same time, this group of diseases remains mainly an oncological problem, and clinical decisions are made only when MNs are detected in carriers of pathogenic mutations.Individual recommendations for cancer screening, treatment, and prevention should be developed for carriers of mutations associated with HTS to prevent an adverse outcome of the disease. It is essential to identify patients at risk by doctors of all specialties for further referral to medical and genetic counseling with molecular genetic testing (in case of indications). The problems of standardization of enrollment criteria for genetic tests, further tactics of prevention, screening, and treatment of many hereditary oncological diseases remain unsolved.This review was created to inform doctors of various specialties, including endocrinologists, about the HTS. This allows them to get acquainted with main clinical features of specific syndromes, helps to understand the difference between hereditary and non-hereditary cancer, recognize signs of hereditary cancer, and introduce the indications for genetic examination and genetic counseling of the patient. Also, significant differences between international and domestic recommendations on screening measures, diagnosis, and treatment of HTS underline the need to review the existing and develop new algorithms for medical support of patients with HTS.


Assuntos
Síndromes Neoplásicas Hereditárias , Aconselhamento Genético , Testes Genéticos , Heterozigoto , Humanos , Mutação , Síndromes Neoplásicas Hereditárias/diagnóstico
3.
Sci Rep ; 9(1): 413, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674891

RESUMO

How is a water-soluble globular protein able to spontaneously cross a cellular membrane? It is commonly accepted that it undergoes significant structural rearrangements on the lipid-water interface, thus acquiring membrane binding and penetration ability. In this study molecular dynamics (MD) simulations have been used to explore large-scale conformational changes of the globular viscumin A chain in a complex environment - comprising urea and chloroform/methanol (CHCl3/MeOH) mixture. Being well-packed in aqueous solution, viscumin A undergoes global structural rearrangements in both organic media. In urea, the protein is "swelling" and gradually loses its long-distance contacts, thus resembling the "molten globule" state. In CHCl3/MeOH, viscumin A is in effect turned "inside out". This is accompanied with strengthening of the secondary structure and surface exposure of hydrophobic epitopes originally buried inside the globule. Resulting solvent-adapted models were further subjected to Monte Carlo simulations with an implicit hydrophobic slab membrane. In contrast to only a few point surface contacts in water and two short regions with weak protein-lipid interactions in urea, MD-derived structures in CHCl3/MeOH reveal multiple determinants of membrane interaction. Consequently it is now possible to propose a specific pathway for the structural adaptation of viscumin A with respect to the cell membrane - a probable first step of its translocation into cytoplasmic targets.


Assuntos
Membrana Celular/química , Membranas Artificiais , Redobramento de Proteína , Proteínas Inativadoras de Ribossomos Tipo 2/química , Toxinas Biológicas/química , Transporte Proteico
4.
Anal Chem ; 87(21): 10807-14, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26437673

RESUMO

Covalent immobilization of enzymes at electrodes via amide bond formation is usually carried out by a two-step protocol, in which surface carboxylic groups are first activated with the corresponding cross-coupling reagents and then reacted with protein amine groups. Herein, it is shown that a modification of the above protocol, involving the simultaneous incubation of tobacco peroxidase and the pyrolytic graphite electrode with the cross-coupling reagents produces higher and more stable electrocatalytic currents than those obtained with either physically adsorbed enzymes or covalently immobilized enzymes according to the usual immobilization protocol. The remarkably improved electrocatalytic properties of the present peroxidase biosensor that operates in the 0.3 V ≤ E ≤ 0.8 V (vs SHE) potential range can be attributed to both an efficient electronic coupling between tobacco peroxidase and graphite and to the formation of intra- and intermolecular amide bonds that stabilize the protein structure and improve the percentage of anchoring groups that provide an adequate orientation for electron exchange with the electrode. The optimized tobacco peroxidase sensor exhibits a working concentration range of 10-900 µM, a sensitivity of 0.08 A M(-1) cm(-2) (RSD 0.05), a detection limit of 2 µM (RSD 0.09), and a good long-term stability, as long as it operates at low temperature. These parameter values are among the best reported so far for a peroxidase biosensor operating under simple direct electron transfer conditions.


Assuntos
Técnicas Biossensoriais/métodos , Eletrodos , Enzimas Imobilizadas/química , Grafite/química , Nicotiana/enzimologia , Peroxidase/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas
5.
Nanoscale ; 6(12): 6755-62, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24824192

RESUMO

Few-layer graphene/TiO2 nanocrystal composites are successfully in situ synthesized at a low temperature of 400 °C using C28H16Br2 as the precursor. Raman mapping images show that the TiO2 nanocrystals are very uniformly dispersed in the composite films, and the in situ coating during the thermal decomposition process will favor the formation of a good interface combination between the few-layered graphene and the TiO2 nanocrystals. The few-layer graphene/TiO2 nanocrystal composites are used as photoanodes in dye-sensitized solar cells (DSSCs), and the conversion efficiency of 8.25% is obtained under full sun irradiation (AM 1.5), which increases by 65% compared with that of the pure TiO2 nanocrystal DSSCs (5.01%). It is found that the good interface combination between few-layered graphene and TiO2 nanocrystals may improve the electric conductivity and lifetime of photoinduced electrons in DSSCs. Moreover, some carbon atoms are doped into the crystal structure of the TiO2 nanocrystals during the thermal decomposition process, which will enhance the light absorption by narrowing the band gap and favor the improvement of the photovoltaic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...