Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 9(24): 4941-4955, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34105581

RESUMO

Thrombosis-related diseases are undoubtedly the deadliest disorders. During the last decades, numerous attempts were made to reduce the overall death rate and severe complications caused by treatment delays. Significant progress has been made in the development of nanostructured thrombolytics, especially magnetically controlled. The emergence of thrombolytic magnetic actuators, which can deliver tPA to the occlusion zone and perform mechanical disruption of the fibrin network under the application of a rotating magnetic field (RMF), can be considered for the next generation of thrombolytic drugs. Thus, we propose a systematic study of magnetic-field mediated mechanically-assisted thrombolysis (MFMMAT) for the first time. Four types of magnetic particles with different morphology and dimensionality were utilized to assess their impact on model clot lysis under different RMF parameters. Chain-like 1D and sea urchins-like 3D structures were found to be the most effective, increasing thrombolysis efficacy to nearly 200%. The drastic difference was also observed during the dissolution of 3 days old blood clots. Pure plasminogen activator had almost no effect on clot structure during 30 minutes of treatment while applying MFMMAT led to the significant decrease of clot area, thus uncovering the possibility of deep venous thrombosis therapy.


Assuntos
Fibrinolíticos/farmacologia , Campos Magnéticos , Anisotropia
2.
J Phys Chem Lett ; 11(21): 8989-8996, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33035064

RESUMO

For decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by Saccharomyces cerevisiae due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range. We propose an acceleration mechanism based on magnetic field-induced cell membrane permeabilization. The ability to control cell metabolism without affecting their viability is a promising way for industrial biosynthesis to obtain a beneficial product with genetically engineered cells and subsequent improvement of biotechnological processes.


Assuntos
Materiais Biocompatíveis/química , Etanol/química , Glucose/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Saccharomyces cerevisiae/metabolismo , Biocatálise , Vias Biossintéticas , Permeabilidade da Membrana Celular , Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Campos Magnéticos , Modelos Químicos , Oxirredução , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 10(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059377

RESUMO

Rapid detection of bacterial contamination is an essential task in numerous medical and technical processes and one of the most rapidly developing areas of nano-based analytics. Here, we present a simple-to-use and special-equipment-free test-system for bacteria detection based on magnetite nanoparticle arrays. The system is based on peroxide oxidation of chromogenic substrate catalyzed by magnetite nanoparticles, and the process undergoes computer-aided visual analysis. The nanoparticles used had a pristine surface free of adsorbed molecules and demonstrated high catalytic activities up to 6585 U/mg. The catalytic process showed the Michaelis-Menten kinetic with Km valued 1.22 mmol/L and Vmax of 4.39 µmol/s. The nanoparticles synthesized were used for the creation of inkjet printing inks and the design of sensor arrays by soft lithography. The printed sensors require no special equipment for data reading and showed a linear response for the detection of model bacteria in the range of 104-108 colony-forming units (CFU) per milliliter with the detection limit of 3.2 × 103 CFU/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...