Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioimpacts ; 12(3): 183-193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677670

RESUMO

Introduction: The current study, for the first time, suggests nature-made pollen grains (PGs) of Pistacia vera L. as a potential candidate for using as scaffolding building blocks with encapsulation capability of bioactive compounds, such as bone morphogenetic protein 4 (BMP4). Methods: A modified method using KOH (5%, 25ºC) was developed to produce nonallergic hollow pollen grains (HPGs), confirmed by energy dispersive X-ray (EDX) analysis, field emission scanning electron microscopy (FESEM), and DNA and protein staining techniques. The in-vitro study was conducted on human adipose-derived mesenchymal stem cells (hAD-MSCs) to investigate the applicability of HPGs as bone scaffolding building blocks. Cytocompability was evaluated by FESEM, MTT assay, and gene expression analysis of apoptotic markers (BAX and BCL2). The osteoconductive potential of HPGs was assessed by alkaline phosphatase (ALP) activity measurement and gene expression analysis of osteogenic markers (RUNX2 and osteocalcin). Results: Findings demonstrated that HPGs can be considered as biocompatible compounds increasing the metabolic activities of the cells. Further, the bioactive nature of HPGs resulted in suitable cellular adhesion properties, required for a potent scaffold. The investigation of apoptotic gene expression indicated a reduced BAX/BCL2 ratio reflecting the protective effect of HPGs on hAD-MSCs. The increased ALP activity and expression of osteogenic genes displayed the osteoconductive property of HPGs. Moreover, the incorporation of BMP4 in HPGs initiated a synergistic effect on osteoblast maturation. Conclusion: Owing to the unique compositional and surface nanotopographical features of the Pistacia vera L. HPG, this microscale architecture provides a favorable microenvironment for the bottom-up remodeling of bone.

2.
Top Curr Chem (Cham) ; 380(2): 13, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35149879

RESUMO

Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.


Assuntos
Quitosana , Regeneração , Engenharia Tecidual , Alicerces Teciduais
3.
J Trace Elem Med Biol ; 71: 126921, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35033859

RESUMO

INTRODUCTION: Cell-adhesive surfaces play a pivotal role in biomedical engineering, as most biological reactions take place on surfaces. Pollen shell (PSh) ofPistacia vera L., as a new medical device, has previously been reported to cause cytotoxicity and apoptosis in MG-63 bone cancer cells. METHODS: Iron oxide nanoparticles (Fe3O4NPs) were synthesized and their reaction to PShs was gauged at different concentrations, and then characterized using field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy, energy dispersion X-ray spectrometer, X-ray diffraction spectra, dynamic light scattering, and vibrating sample magnetometer. Then, the biological impacts of PShs/Fe3O4NPs composites on MG-63 cells were investigated in-vitro using MTT assay, quantitative polymerase chain reaction (qPCR), Annexin V/propidium iodide, FESEM, and DAPI staining. RESULTS: Fe3O4NPs with a size range of 24-40 nm and a zeta potential value of -37.4 mV were successfully assembled on the PShs. The viability of MG-63 cells was significantly decreased when cultured on the magnetic PShs as compared to non-magnetic PShs, in Fe3O4 concentration and time-dependent manner. In contrast, magnetic PShs had a positive effect on the viability of normal human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The analysis of apoptosis-related genes in cancer cells revealed that loading Fe3O4NPs on PShs increased expression of BAX/BCL2 and caspase-3 genes. The increased apoptotic activity of combined PShs/Fe3O4NPs was further confirmed by flow cytometric measurement, morphological analysis, and DAPI staining. CONCLUSION: The incorporation of Fe3O4NPs into PShs could effectively increase anticancer effects on MG-63 cells via the mitochondria-mediated apoptosis pathway, evident by upregulation of BAX/BCL2 ratio and caspase-3.


Assuntos
Neoplasias Ósseas , Nanopartículas , Osteossarcoma , Humanos , Caspase 3 , Proteína X Associada a bcl-2 , Nanopartículas/química
4.
Biol Trace Elem Res ; 199(5): 1802-1811, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32816138

RESUMO

The combined bioceramic of selenium (Se) and hydroxyapatite (HA) has been considered as a moderate bone scaffold biomaterial. In the present work, Se was doped into the HA structure using the mechano-chemical alloying (MCA) method for the improvement of osteogenic properties of HA. HA extracted from fish bone and Se-doped hydroxyapatite (Se-HA) were analyzed using X-ray diffraction spectra (XRD), scanning electron microscope (SEM), energy dispersion X-ray spectrometer (EDX), and Fourier transform infrared spectroscopy (FT-IR). In-vitro cell responses on the Se-HA bioceramic scaffold were investigated using human adipose-derived mesenchymal stem cells (hAD-MSCs). The effect of Se on cell proliferation was studied by MTT assay, and cell adhesion responses were analyzed by optical microscopy and SEM. Furthermore, the effect of Se on osteogenic properties of HA was studied by alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and Western blot tests. The MTT results showed that the Se dopant synergistically increases the proliferation of hAD-MSCs. Moreover, good cell-adhesive and osteoblast-shaped behaviors were observed on the Se-HA scaffold. The results of osteogenic differentiation demonstrated synergistically enhanced ALP activity and calcification on the Se dopant compared to HA. Also, the results of Western blot test presented that the differentiation of hAD-MSCs toward being a bone tissue was increased by up to 50% while selenium doping. Additional MTT analysis using Human Bone Osteosarcoma cell line (KHOS-240S) revealed the antiproliferative activity of the Se-HA scaffold against bone cancerous cells. Therefore, it has been concluded that Se-HA bioceramic can be employed as a scaffold with simultaneous anticancer and bone regenerative properties.


Assuntos
Osteogênese , Selênio , Animais , Osso e Ossos , Diferenciação Celular , Proliferação de Células , Durapatita , Humanos , Selênio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...