Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762334

RESUMO

Hydrophobic deep eutectic solvents (HDES) are widely used as extractants. Usually, when preparing HDES, only the extraction ability of one component is taken into account, with the second serving as an "inert" component, whose effect on the extraction process is not taken into account. The present study demonstrates the possibility of controlling the selectivity of a hydrophobic deep eutectic solvent based on trioctylphosphine oxide (TOPO) by varying the substance that acts as a hydrogen bond donor, but which does not have an extractive ability. In the course of the work, the influence of the "inert" component on the physicochemical and extraction properties of HDES was confirmed by experimental, spectroscopic, and also calculation methods. A number of phenols with different structural features were chosen as the HDES' hydrogen bond donors to modify: phenol (Ph), para-tert-butylphenol (PTBP) and thymol (Th). Using the example of separation of the Sm/Co pair, the influence of the structure of a hydrogen bond donor on the extraction ability of a hydrophobic deep eutectic solvent was established, where the degree of extraction of Sm (III) increased in the series Th:TOPO < PTBP:TOPO < Ph:TOPO. HDES based on TOPO and phenols can potentially be used to separate Sm and Co from the process leach solutions generated during the hydrometallurgical processing of waste SmCo magnets.


Assuntos
Solventes Eutéticos Profundos , Fenóis , Fenol , Solventes , Fenômenos Magnéticos
2.
Membranes (Basel) ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367758

RESUMO

This article is devoted to a brief review of the modelling of liquid membrane separation methods, such as emulsion, supported liquid membranes, film pertraction, and three-phase and multi-phase extraction. Mathematical models and comparative analyses of liquid membrane separations with different flow modes of contacting liquid phases are presented. A comparison of the processes of conventional and liquid membrane separations is carried out under the following assumptions: mass transfer is described by the traditional mass transfer equation; the equilibrium distribution coefficients of a component passing from one of the phases to another are constant. It is shown that, from the point of view of mass transfer driving forces, emulsion and film pertraction liquid membrane methods have advantages over the conventional conjugated extraction stripping method, when the mass-transfer efficiency of the extraction stage is significantly higher than the efficiency of the stripping stage. The comparison of the supported liquid membrane with conjugated extraction stripping showed that when mass-transfer rates on the extraction and stripping sides are different, the liquid membrane method is more efficient, while when they are equal to each other, both processes demonstrate the same results. The advantages and disadvantages of liquid membrane methods are discussed. The main disadvantages of liquid membrane methods-low throughput and complexity-can be overcome by using modified solvent extraction equipment to carry out liquid membrane separations.

3.
Membranes (Basel) ; 13(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37103845

RESUMO

Pseudo-liquid membranes are extraction devices in which a liquid membrane phase is retained in an apparatus consisting of two interconnected chambers while feed and stripping phases pass through the stationary liquid membrane phase as mobile phases. The organic phase of the liquid membrane sequentially contacts the aqueous phases of the feed and stripping solutions in the extraction and stripping chambers, recirculating between them. This extraction separation method, called multiphase pseudo-liquid membrane extraction, can be implemented using traditional extraction equipment: extraction columns and mixer-settlers. In the first case, the three-phase extraction apparatus consists of two extraction columns connected at the top and bottom by recirculation tubes. In the second case, the three-phase apparatus consists of a recycling close-loop, which includes two mixer-settler extractors. In this study, the extraction of copper from sulfuric acid solutions in two-column three-phase extractors was experimentally studied. A 20% solution of LIX-84 in dodecane was used as the membrane phase in the experiments. It was shown that the extraction of copper from sulfuric acid solutions in the apparatuses studied was controlled by the interfacial area in the extraction chamber. The possibility of the purification of sulfuric acid wastewaters from copper using three-phase extractors is shown. To increase the degree of extraction of metal ions, it is proposed to equip two-column three-phase extractors with perforated vibrating discs. To further increase the efficiency of extraction using the pseudo-liquid membrane method, it is proposed to use multistage processes. The mathematical description of multistage three-phase pseudo-liquid membrane extraction is discussed.

4.
Data Brief ; 28: 105033, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909127

RESUMO

The use of green chemistry principles in the extraction of aromatic acids from dilute aqueous solutions has been considered. The extraction of a number of aromatic acids important for the food and pharmaceutical industries in heterogeneous systems based on poly(ethylene) glycol 1500 (PEG-1500) has been studied for the first time. This research presents a data of the quantitative characteristics of the extraction of benzoic, salicylic and sulfosalicylic acids using a PEG-1500 (15 wt %)/Na2SO4 (9 wt %) aqueous two-phase system under various conditions (temperature and рН). The effect of various phase-forming salts (Na2CO3, (NH4)2SO4, and (NH4)2HPO4) in a PEG-1500-based aqueous two-phase system on the extraction of aromatic acids has been found. For salicylic and sulfosalicylic acids, distribution coefficients when using (NH4)2HPO4 have been obtained that considerably exceed values for conventional water-organic solvent systems.

5.
J Chromatogr A ; 1610: 460513, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31543338

RESUMO

We report a case of a peculiar effect of flow rate on retention in a separation of polyethylene glycol oligomers via supercritical fluid chromatography. During method development, we tested flow rate gradients and notices that for some PEG oligomers retention times at flow rate gradient were lower than at constant flow with the largest flow rate value used in a gradient. For instance, at BEH stationary phase and CO2-MeOH gradient from 10 to 35% at 20 min a PEG oligomer having mass of 1225 Da has a retention time 14 min at 1 mL/min flow rate, 10.3 at 2 mL/min and 9.5 min at 1-2 mL/min flow rate gradient. The effect is not unified for all PEG oligomers, it occurs only starting from a particular PEG molecular weight which depends on the stationary phase type and/or mobile phase conditions. We believe that such an unusual flow rate effects can happen in SFC on various occasions, not exclusively for flow rate gradients, and thus should be taken into account during method development or method transfer.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Polietilenoglicóis , Peso Molecular , Polietilenoglicóis/análise , Polietilenoglicóis/química , Polietilenoglicóis/isolamento & purificação
6.
Molecules ; 24(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718040

RESUMO

This article presents an ecologically safe aqueous two-phase system based on poly(ethylene oxide) with a molecular weight of 1500, designed for complex extraction of Ni(II), Co(II), Fe(III), Mn(II), Zn(II), Cu(II), and Al(III) from nitrate solutions. A kinetic dependence has been investigated for a distribution ratio for the metals examined. The influence of pH-values, temperature, initial metal concentration, and nitric acid content have on the extraction of a wide range of metals in the heterogeneous poly(ethylene oxide) 1500-NaNO3-H2O system has been discovered. As a result, the complex extraction of metals (EMe > 60%) was achieved in one step of extraction without introducing additional chemicals into the system.


Assuntos
Extração Líquido-Líquido , Metais/química , Metais/isolamento & purificação , Nitratos/química , Polietilenoglicóis/química , Algoritmos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...