Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Anal Chem ; 2024: 6004970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529171

RESUMO

Urine test strips for urinalysis are a common diagnostic tool with minimal costs and are used in various situations including homecare and hospitalization. The coloration scaled by the naked eye is simple, but it is suitable for semiquantitative analysis only. In this paper, a colorimetric assay is developed based on a smartphone digital camera and urine test strips. Assays of pH, albumin, glucose, and lipase activity were performed as a tool for the diagnosis of aciduria, alkaluria, glycosuria, proteinuria, and leukocyturia. The RGB color channels were analyzed in the colorimetric assay, and the assay exerted good sensitivity, and all the particular diagnoses proved to be reliable. The limits of detection for glucose (0.11 mmol/L), albumin (0.15 g/L), and lipase (2.50 U/µL) were low enough to cover the expected physiological concentration, and the range for pH was also satisfactory. The urine test strips with a camera as an output detector proved applicability to spiked urine samples, and the results were also well in comparison to the standard assays which confirms the practical relevance of the presented findings.

2.
Cells ; 12(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831274

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.


Assuntos
Francisella tularensis , Francisella tularensis/genética , Francisella tularensis/metabolismo , Citocinas/metabolismo , Proteômica , Virulência/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Expressão Gênica
3.
Int J Anal Chem ; 2022: 2623155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432544

RESUMO

Biosensors containing cholinesterase are analytical devices suitable for the assay of neurotoxic compounds. In the research on biosensors, a new platform has appeared some years ago. It is the digital photography and scoring of coloration (photogrammetry). In this paper, a colorimetric biosensor is constructed using 3D-printed multiwell pads treated with indoxylacetate as a chromogenic substrate and gold nanoparticles with the immobilized enzyme butyrylcholinesterase. A smartphone camera served for photogrammetry. The biosensor was tested for the assay of carbofuran and paraoxon ethyl as two types of covalently binding inhibitors: irreversible and pseudoirreversible. The biosensor exerted good sensitivity to the inhibitors and was able to detect carbofuran with a limit of detection for carbofuran 7.7 nmol/l and 17.6 nmol/l for paraoxon ethyl. A sample sized 25 µl was suitable for the assay lasting approximately 70 minutes. Up to 121 samples can be measured contemporary using one multiwell pad. The received data fully correlated with the standard spectrophotometry. The colorimetric biosensor exerts promising specifications and appears to be competitive to the other analytical procedures working on the principle of cholinesterase inhibition. Low-cost, simple, and portable design represent an advantage of the assay of the biosensor. Despite the overall simplicity, the biosensor can fully replace the standard spectroscopic methods.

4.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807562

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) can serve as biochemical markers of various pathologies like liver disfunction and poisonings by nerve agents. Ellman's assay is the standard spectrophotometric method to measure cholinesterase activity in clinical laboratories. The authors present a new colorimetric test to assess AChE and BChE activity in biological samples using chromogenic reagents, treated 3D-printed measuring pads and a smartphone camera as a signal detector. Multiwell pads treated with reagent substrates 2,6-dichlorophenolindophenyl acetate, indoxylacetate, ethoxyresorufin and methoxyresorufin were prepared and tested for AChE and BChE. In the experiments, 3D-printed pads containing indoxylacetate as a chromogenic substrate were optimal for analytical purposes. The best results were achieved using the red (R) channel, where the limit of detection was 4.05 µkat/mL for BChE and 4.38 µkat/mL for AChE using a 40 µL sample and a 60 min assay. The major advantage of this method is its overall simplicity, as samples are applied directly without any specific treatment or added reagents. The assay was also validated to the standard Ellman's assay using human plasma samples. In conclusion, this smartphone camera-based colorimetric assay appears to have practical applicability and to be a suitable method for point-of-care testing because it does not require specific manipulation, additional education of staff or use of sophisticated analytical instruments.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Colorimetria , Humanos , Smartphone , Espectrofotometria
5.
Artigo em Inglês | MEDLINE | ID: mdl-29322032

RESUMO

The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.


Assuntos
Francisella tularensis/enzimologia , Francisella tularensis/patogenicidade , Deleção de Genes , Gliceraldeído-3-Fosfato Desidrogenases/deficiência , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Isomerases de Dissulfetos de Proteínas/deficiência , Animais , Proteínas Sanguíneas/metabolismo , Modelos Animais de Doenças , Francisella tularensis/imunologia , Camundongos , Viabilidade Microbiana , Ligação Proteica , Proteoma/análise , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Virulência , Fatores de Virulência/análise
6.
J Biol Chem ; 286(16): 14291-303, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21245151

RESUMO

The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.


Assuntos
Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Cromatografia de Afinidade/métodos , Proteínas de Ligação a DNA/química , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/química , Nucleofosmina , Peptídeos/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/química , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína 28 com Motivo Tripartido , Proteína 1 de Ligação a Y-Box
7.
Microb Pathog ; 49(5): 226-36, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20600796

RESUMO

Francisella tularensis is a facultative intracellular, gram-negative bacterium that induces apoptosis in macrophages and B cells. Here we show apoptotic pathways that are activated in the Ramos human B cell line in the course of F. tularensis infection. Live bacteria F. tularensis FSC200 activate caspases 8, 9 and 3, as well as Bid; release cytochrome c and apoptosis-inducing factor from mitochondria; and induce depolarization of mitochondrial membrane potential in the Ramos cell line, thus leading these cells to apoptosis. Unlike live bacteria, killed F. tularensis FSC200 bacteria activated only caspase 3, and did not cause apoptosis of Ramos cells as measured by annexin V. Killed bacteria also caused accumulation of anti-apoptotic protein Bclx(L) in mitochondrial membranes. Thus, live F. tularensis activates both caspase pathways (receptor-mediated and intrinsic) as well as caspase-independent mitochondrial death.


Assuntos
Apoptose , Linfócitos B/microbiologia , Francisella tularensis/patogenicidade , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/biossíntese , Caspase 3/biossíntese , Caspase 8/biossíntese , Caspase 9/biossíntese , Linhagem Celular , Citocromos c/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/enzimologia , Mitocôndrias/fisiologia
8.
Proteomics ; 9(10): 2875-82, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19415661

RESUMO

Proteomics has been shown to significantly contribute to the investigation of the pathogenicity of the extremely infectious bacteria Francisella tularensis. In this study, the authors employed iTRAQ quantitative proteomic analysis in order to monitor alterations in proteomes of F. tularensis ssp. holarctica live vaccine strain and F. tularensis ssp. tularensis SCHU S4 associated with the cultivation at different temperatures or in the stationary phase. Correlated production of the identified proteins studied by the exploratory statistical analysis revealed novel candidates for virulence factors that were regulated in a similar manner to the genes encoded in the Francisella Pathogenicity Island. Moreover, the assessment of the adaptation of live vaccine strain and SCHU S4 strain to the examined stimuli uncovered differences in their physiological responses to the stationary phase of growth.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/metabolismo , Proteômica/métodos , Fatores de Virulência/metabolismo , Cromatografia Líquida , Francisella tularensis/classificação , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...