Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17992, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289269

RESUMO

The activity of inhibitory interneurons has a profound role in shaping cortical plasticity. Somatostatin-expressing interneurons (SOM-INs) are involved in several aspects of experience-dependent cortical rewiring. We addressed the question of the barrel cortex SOM-IN engagement in plasticity formation induced by sensory deprivation in adult mice (2-3 months old). We used a spared vibrissa paradigm, resulting in a massive sensory map reorganization. Using chemogenetic manipulation, the activity of barrel cortex SOM-INs was blocked or activated by continuous clozapine N-oxide (CNO) administration during one-week-long deprivation. To visualize the deprivation-induced plasticity, [14C]-2-deoxyglucose mapping of cortical functional representation of the spared whisker was performed at the end of the deprivation. The plasticity was manifested as an extension of cortical activation in response to spared vibrissae stimulation. We found that SOM-IN inhibition in the cortical column of the spared whisker did not influence the areal extent of the cortex activated by the spared whisker. However, blocking the activity of SOM-INs in the deprived column, adjacent to the spared one, decreased the plasticity of the spared whisker representation. SOM-IN activation did not affect plasticity. These data show that SOM-IN activity is part of cortical circuitry that affects interbarrel interactions underlying deprivation-induced plasticity in adult mice.


Assuntos
Córtex Somatossensorial , Vibrissas , Camundongos , Animais , Vibrissas/fisiologia , Córtex Somatossensorial/fisiologia , Plasticidade Neuronal/fisiologia , Interneurônios , Somatostatina , Desoxiglucose/farmacologia
2.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119146, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599984

RESUMO

Gaba-ergic neurons are a diverse cell class with extensive influence over cortical processing, but their role in experience-dependent plasticity is not completely understood. Here we addressed the role of cortical somatostatin- (SOM-INs) and vasoactive intestinal polypeptide- (VIP-INs) containing interneurons in a Pavlovian conditioning where stimulation of the vibrissae is used as a conditioned stimulus and tail shock as unconditioned one. This procedure induces a plastic change observed as an enlargement of the cortical functional representation of vibrissae activated during conditioning. Using layer-targeted, cell-selective DREADD transductions, we examined the involvement of SOM-INs and VIP-INs activity in learning-related plastic changes. Under optical recordings, we injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to the activated vibrissae. The activity of the interneurons was modulated during all conditioning sessions, and functional 2-deoxyglucose (2DG) maps were obtained 24 h after the last session. In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation was absent. The behavioral effect of conditioning was disturbed. Both L4 SOM-INs excitation and L2/3 VIP-INs inhibition during conditioning did not affect the plasticity or the conditioned response. We found the activity of L4 SOM-INs is indispensable in the formation of learning-induced plastic change. We propose that L4 SOM-INs may provide disinhibition by blocking L4 parvalbumin interneurons, allowing a flow of information into upper cortical layers during learning.


Assuntos
Interneurônios/fisiologia , Aprendizagem , Inibição Neural , Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Córtex Somatossensorial/citologia , Somatostatina/genética , Somatostatina/metabolismo , Vibrissas/inervação , Vibrissas/fisiologia
3.
Behav Brain Res ; 252: 293-301, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23791933

RESUMO

The thalamocortical loop is a key player in sensory processing. We examined the functional interactions among its elements, expressed as cross-correlations between metabolic activity of the barrel cortex, somatosensory thalamic nuclei and posterior parietal cortex, in classical conditioning. In the training stimulation of vibrissae in mice was paired with a tail shock. [14C]-2-Deoxyglucose brain mapping was performed during the first and the final sessions of conditioning (conditioned stimulus+unconditioned stimulus; CS+UCS), in groups that received only the stimulation of vibrissae (conditioned stimulus; CS-only) and in nonstimulated controls (NS). In the CS-only group, the CS evoked the correlated activity of the examined structures during the first session, but in the third session these structures did not act in a correlated manner. Conversely, in the CS+UCS condition correlations among the thalamocortical loop structures activities became stronger during the course of the training. Particularly, the posterior parietal cortex, which controls voluntary deployment of attention, together with the barrel cortex becomes involved in the network of structures with the correlated activity. The results suggest a predominant role for bottom-up processing in the somatosensory pathway at the beginning of conditioning followed by top-down processing. This is consistent with the idea that the thalamocortical loop plays a crucial role in attentional processes.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Aprendizagem/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Análise de Variância , Animais , Autorradiografia , Mapeamento Encefálico , Isótopos de Carbono , Córtex Cerebral/diagnóstico por imagem , Condicionamento Clássico/fisiologia , Desoxiglucose/metabolismo , Feminino , Camundongos , Vias Neurais/diagnóstico por imagem , Cintilografia , Tálamo/diagnóstico por imagem , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...