Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063683

RESUMO

A study on 5CB liquid crystal composites with SiO2 nanoparticles and an additional commixture with Fe3O4 nanoparticles using light transmission and SAW measurements is presented. The prepared liquid crystal composites exhibited an interesting memory effect characterized by the hysteresis of both light transmission and SAW attenuation responses investigated in the nematic phase. While in the case of SiO2 nanoparticles as dopants, the liquid crystal composite showed an improvement in the memory effect, the addition of Fe3O4 magnetic nanoparticles resulted in the memory effect decreasing. Additional studies showed a significant shift in both the threshold voltage and nematic-isotropic transition temperature. Measurements in the magnetic field confirmed the increasing memory effect according to that of pure 5CB. The properties of these composites could lead to a potential application for the fabrication of memory devices suitable for information storage.

2.
J Acoust Soc Am ; 153(6): 3292, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306559

RESUMO

The effect of spherical magnetic nanoparticles with different size (5, 10, 15, and 20 nm) and volume concentration (10-3, 5 × 10-4, and 10-4) on liquid crystal 4-cyano-4'-hexylbiphenyl (6CB) behavior was investigated using surface acoustic wave (SAW). The attenuation response of SAW propagating along with the substrate/liquid crystal interface was used to study the structural changes induced by an applied magnetic field. The obtained results showed the shift of the threshold magnetic field with an increase in the volume concentration of nanoparticles toward lower fields and also the decrease in the isotropic-nematic phase transition temperature depending on the nanoparticle size and the nanoparticle volume fraction. Results confirmed again that the bulk viscosity coefficients should dominate the SAW attenuation and that the SAW investigation in the presented configuration is applicable to monitoring of the role of magnetic dopants in structural changes under external fields. Some theoretical background of the presented SAW investigation is introduced as well. Obtained results are discussed within the context of previous ones.

3.
Sensors (Basel) ; 23(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299978

RESUMO

A pilot analysis of the tear fluid of patients with multiple sclerosis (MS) collected by glass microcapillary was performed using various experimental methods: liquid chromatography-mass spectrometry, Raman spectroscopy, infrared spectroscopy, and atomic-force microscopy. Infrared spectroscopy found no significant difference between the tear fluid of MS patients and the control spectra; all three significant peaks were located at around the same positions. Raman analysis showed differences between the spectra of the tear fluid of MS patients and the spectra of healthy subjects, which indicated a decrease in tryptophan and phenylalanine content and changes in the relative contributions of the secondary structures of the polypeptide chains of tear proteins. Atomic-force microscopy exhibited a surface fern-shaped dendrite morphology of the tear fluid of patients with MS, with less roughness on both oriented silicon (100) and glass substrates compared to the tear fluid of control subjects. The results of liquid chromatography-mass spectrometry showed downregulation of glycosphingolipid metabolism, sphingolipid metabolism, and lipid metabolism. Proteomic analysis identified upregulated proteins in the tear fluid of patients with MS such as cystatine, phospholipid transfer protein, transcobalamin-1, immunoglobulin lambda variable 1-47, lactoperoxidase, and ferroptosis suppressor protein 1; and downregulated proteins such as haptoglobin, prosaposin, cytoskeletal keratin type I pre-mRNA-processing factor 17, neutrophil gelatinase-associated lipocalin, and phospholipase A2. This study showed that the tear proteome in patients with MS is modified and can reflect inflammation. Tear fluid is not a commonly used biological material in clinico-biochemical laboratories. Experimental proteomics has the potential to become a promising contemporary tool for personalized medicine, and it might be applied in clinical practice by providing a detailed analysis of the tear-fluid proteomic profile of patients with MS.


Assuntos
Esclerose Múltipla , Proteômica , Humanos , Proteômica/métodos , Esclerose Múltipla/diagnóstico , Lágrimas/química , Espectrometria de Massas , Cromatografia Líquida
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35889684

RESUMO

The effect of magnetic nanoparticles size and concentration on nematic liquid crystal (NLC) behavior in a magnetic field was investigated. The magneto-optical investigation using measurements of the light transmission through the liquid crystal was used to study the structural changes induced by an applied weak magnetic field. Magnetic nanoparticles Fe3O4 of spherical shape with different size and volume concentration were added to NLC 4-cyano-40 -hexylbiphenyl (6CB) during its isotropic phase. In contrast to undoped liquid crystals, the distinctive different light transmission responses induced by a magnetic field in studied NLC samples were observed suggesting both structural changes and the orientational coupling between magnetic moments of nanoparticles and the director of the NLC. Experimental measurements were conducted, including investigation under linearly increasing and/or jumped magnetic field, respectively, as well as the investigation of time influence on structural changes to study their stability and switching time. The analysis of observed light transmission characteristics confirmed the role of concentration and size of magnetic nanoparticles on the resultant behavior of investigated NLC compounds. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles and on the important role of nanoparticles size on stability and switching properties. Obtained results are discussed within the context of previous ones.

5.
iScience ; 24(12): 103493, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927029

RESUMO

Clustering of magnetic nanoparticles can dramatically change their collective magnetic properties, and it consequently may influence their performance in biomedical and technological applications. Owing to tailored surface modification of magnetic particles such composites represent stable systems. Here, we report ferronematic mixtures that contain anisotropic clusters of mesogen-hybridized cobalt ferrite nanoparticles dispersed in liquid crystal host studied by different experimental methods-magnetization measurements, small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS), and capacitance measurements. These measurements reveal non-monotonic dependencies of magnetization curves and the Fréedericksz transition on the magnetic nanoparticles concentration. This can be explained by the formation of clusters, whose structures were determined by SAXS measurements. Complementary to the magnetization measurements, SANS measurements of the samples were performed for different magnetic field strengths to obtain information on the orientation of the liquid crystal molecules. We demonstrated that such hybrid materials offer new avenues for tunable materials.

6.
Nanomaterials (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34685084

RESUMO

The effect of the liquid crystalline host on structural changes in magnetosomes based on ferronematics is studied using the surface acoustic wave (SAW) technique supported by some capacitance and light transmission measurements. The measurement of the attenuation response of SAW propagating along the interface between LC and the piezoelectric substrate is used to study processes of structural changes under magnetic field. The magnetosome nanoparticles of the same volume concentration were added to three different nematic LCs, 5CB, 6CB, and E7. Unlike to undoped LCs, the different responses of SAW attenuation under the influence of magnetic and electric fields in LCs doped with magnetosomes were observed due to characteristic structural changes. The decrease of the threshold field for doped LCs as compared with pure LCs and slight effects on structural changes were registered. The threshold magnetic fields of LCs and composites were determined from capacitance measurements, and the slight shift to lower values was registered for doped LCs. The shift of nematic-isotropic transition was registered from dependencies of SAW attenuation on temperature. The acoustic anisotropy measurement approved the previous supposition about the role of bulk viscosity in used SAW measurements. In addition, capacitance and light transmition investigations supported SAW results and pointed out conclusions about their magnetic field behavior. Obtained results are discussed and confronted with previous ones and coincide well with those observed using acoustic, optical, or dielectric techniques.

7.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443453

RESUMO

Understanding the formation process and the spatial distribution of nanoparticle (NP) clusters on amyloid fibrils is an essential step for the development of NP-based methods to inhibit aggregation of amyloidal proteins or reverse the assembling trend of the proto-fibrillary complexes that prompts pathogenesis of neuro degeneration. For this, a detailed structural determination of the diverse hybrid assemblies that are forming is needed, which can be achieved by advanced X-ray scattering techniques. Using a combined solution small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) approach, this study investigates the intrinsic trends of the interaction between lysozyme amyloid fibrils (LAFs) and Fe3O4 NPs before and after fibrillization at nanometer resolution. AFM images reveal that the number of NP clusters interacting with the lysozyme fibers does not increase significantly with NP volume concentration, suggesting a saturation in NP aggregation on the fibrillary surface. The data indicate that the number of non-adsorbed Fe3O4 NPs is highly dependent on the timing of NP infusion within the synthesis process. SAXS data yield access to the spatial distribution, aggregation manner and density of NP clusters on the fibrillary surfaces. Employing modern data analysis approaches, the shape and internal structural morphology of the so formed nanocomposites are revealed. The combined experimental approach suggests that while Fe3O4 NPs infusion does not prevent the fibril-formation, the variation of NP concentration and size at different stages of the fibrillization process can impose a pronounced impact on the superficial and internal structural morphologies of these nanocomposites. These findings may be applicable in devising advanced therapeutic treatments for neurodegenerative diseases and designing novel bio-inorganic magnetic devices. Our results further demonstrate that modern X-ray methods give access to the structure of-and insight into the formation process of-biological-inorganic hybrid structures in solution.


Assuntos
Amiloide/química , Microscopia de Força Atômica , Muramidase/metabolismo , Nanocompostos/química , Nanopartículas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Animais , Galinhas , Modelos Moleculares , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura
8.
Materials (Basel) ; 14(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198734

RESUMO

In this paper, results acquired from capacitance measurements performed on composites based on nematic liquid crystal 4-cyano-4'-hexylbiphenyl (6CB) and spherical iron oxide nanoparticles of various sizes are presented. Electric and magnetic Fréedericksz transitions, as well as structural transitions in combined electric and magnetic fields, were investigated. The obtained results showed the lowering of the threshold magnetic field with an increase in the volume concentration of nanoparticles. Estimations based on results obtained from measurements suggest soft anchoring between liquid crystal director and nanoparticles magnetization vector.

9.
J Psychiatr Res ; 138: 75-82, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33836432

RESUMO

Spectroscopic methods represent a group of analytical methods that demonstrate high potential in providing clinically relevant diagnostic information, such as biochemical, functional or structural changes of macromolecular complexes that might occur due to pathological processes or therapeutic intervention. Although application of these methods in the field of psychiatric research is still relatively recent, the preliminary results show that they have the capacity to detect subtle neurobiological abnormalities in major depressive disorder (MDD). Methods of mass spectrometry (MALDI-TOF MS), zymography, synchronous fluorescence spectroscopy (SFS), circular dichroism (CD) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) were used to analyze the human tear fluid of subjects with MDD. Using MALDI-TOF MS, two diagnostically significant peaks (3747 and 16 411 m/z) were identified with an AUC value of 0.89 and 0.92 in tear fluid of subjects with MDD vs controls, respectively. We also identified various forms of matrix metalloproteinase 9 in subjects with MDD using zymography and synchronous fluorescence spectra (SFS) showed a significant increase in fluorescence intensity at 280 nm. CD spectra were redshifted in tear fluid of subjects with MDD vs healthy controls. FTIR spectroscopy showed changes in the positions of peaks for amide A, I, II in tear fluid of subjects with MDD vs controls. Moreover, atomic force microscopy (AFM) showed different pattern in the crystal structures of tear fluid components in subjects with MDD. SFS, CD, FTIR spectroscopy, AFM and MALDI-TOF MS confirmed, that the human tear fluid proteome could be helpful in discriminating between the group of subjects with MDD and healthy controls. These preliminary findings suggest that spectral methods could represent a useful tool in clinical psychiatry, especially in establishing differential diagnosis, monitoring illness progression and the effect of psychiatric treatment.


Assuntos
Transtorno Depressivo Maior , Lágrimas/química , Biomarcadores , Transtorno Depressivo Maior/diagnóstico , Humanos , Proteoma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Chemosphere ; 260: 127629, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32698117

RESUMO

Polychlorinated biphenyls are synthetic industrial organic substances. These persistent pollutants occur in nature causing high ecological risks and damage to human health. Magnetoferritin nanoparticles composed of apoferritin protein shell surrounding synthetically prepared iron-based nanoparticles seem to be a promising candidate for polychlorinated biphenyls elimination. Properties of magnetoferritin, as a redox activity, a biocompatible character, high application possibilities and a close relationship with the human body promoted ours in vitro investigation of the magnetoferritin catalytic activity in the presence of representative 2,4,4'-trichlorobiphenyl. Basic physico-chemical properties of magnetoferritin were determined by ultraviolet and visible spectrophotometry, dynamic light scattering, zeta potential measurements, superconducting quantum interference device magnetometry and atomic force microscopy. The remediation effect of magnetoferritin on 2,4,4'-trichlorobiphenyl was demonstrated by the use of gas chromatography in combination with infrared spectroscopy.


Assuntos
Apoferritinas/química , Ferro/química , Óxidos/química , Bifenilos Policlorados/química , Poluentes Ambientais , Humanos , Nanopartículas/química
11.
Nanomaterials (Basel) ; 10(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121458

RESUMO

This research study attempts to prove the concept of the applicability of hyperthermia to treating the lysozyme amyloid fibrils (LAF)'s self-assembled fibrillary aggregates by a feedback-modulated temperature controller ranging from 26 °C to 80 °C, and separately, by near-infrared (NIR) laser-irradiated cesium tungstate (CsWO3) nanoparticle (NPs). The dependence of the final morphology of the amyloidal assembly on external heating and the photothermal effect of the NPs on treating the fibrillary assembly were investigated and analyzed. Experimentally, atomic force microscopy (AFM), optical stereoscopy, and scanning electron microscopy (SEM) were used primarily to ensure mutual interaction between LAF and NPs, optically elucidate the surface contour and final fibrillary assembly upon the influence of thermal treatment, and further reveal fine-details of the optical samples. Finally, conclusive remarks are drawn that the fibrillary structures doped with the NPs exhibit an increasing degree of unique orthogonality. As the temperature rises, utter deformation of the dendritic structures of fibrillary assemblies at 70 °C was found, and NIR laser-irradiated CsWO3 NPs have been demonstrated to be useful in topically destructing pre-assembled LAFs, which may be conducive to the future development of neurodegenerative therapeutic techniques.

12.
RSC Adv ; 9(31): 18050-18059, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520589

RESUMO

Diabetes mellitus and prolonged hyperglycemia can cause diabetic retinopathy. Diabetic retinopathy arises from damage to retinal vessels and, in its final stages, causes blindness. The early stages are often asymptomatic and although regular screening of diabetic patients is recommended, the beginning of diabetic retinopathy is insufficiently detected. The diagnostic potential of fluorescence spectroscopy, infrared spectroscopy and atomic force microscopy as the untraditional methods for diabetes mellitus was investigated using tear fluid. In our pilot study the structural changes of tear fluid of patients with diabetes mellitus after insulin and oral antidiabetic drug treatment was compared with healthy subjects. The results of analysis, infrared spectroscopy and atomic force microscopy confirmed structural changes in tear fluid of patients in comparison with the tear fluid of healthy subjects. Using new experimental laboratory methods in future could contribute to an improvement in diagnosis of diabetes mellitus and other selected ocular diseases using tear fluid.

13.
Nanomaterials (Basel) ; 9(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597897

RESUMO

Nanomedicine compounds containing nanoparticles, such as iron oxides and gold, have been demonstrated to be effective in promoting different magnitudes of interaction with amyloid ß fibrils, of which disintegrating or inhibiting effects are of great importance to treating fibrillary aggregation-induced neurological disorders such as Alzheimer's disease. This research herein studies the interaction between lysozyme amyloid fibrils, a type of fibers derived from hen egg white lysozyme, and Fe3O4 magnetic nanoparticles (MNPs) of an assorted diameter sizes of 5 nm, 10 nm and 20 nm, using atomic force microscopy (AFM). Specifically, the effects of the sizes of negatively charged MNPs on the resultant amyloid fibrillary mixture was investigated. Our results of AFM images indicated that the interaction between MNPs and the fibrils commences immediately after adding MNPs to the fibril solution, and the actions of such MNPs-doped fibrillary interplay, either integration or segmentation, is strongly dependent on the size and volume concentration of MNPs. In the cases of 5 nm and 20 nm particles of equivalent volume concentration, the adsorption and agglomeration of MNPs onto the fibrillary surfaces was observed, whereas, interestingly, MNPs with diameter size of 10 nm enables segmentation of the slender fibrils into debris when a proper implemented volume concentration was found, which signifies utter destruction of the amyloid fibrillary structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...