Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 175: 105961, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581306

RESUMO

Swine dysentery caused by Brachyspira hyodysenteriae is a disease present worldwide with an important economic impact on the farming business, resulting in an increased use of antibiotics. In the present study, we investigated the binding of B. hyodysenteriae to glycosphingolipids from porcine small intestinal epithelium in order to determine the glycosphingolipids involved in B. hyodysenteriae adhesion. Specific interactions between B. hyodysenteriae and two non-acid glycosphingolipids were obtained. These binding-active glycosphingolipids, were characterized by mass spectrometry as lactotetraosylceramide (Galß3GlcNAcß3Galß4Glcß1Cer) and the B5 glycosphingolipid (Galα3Galß4GlcNAcß3Galß4Glcß1Cer). Comparative binding studies using structurally related reference glycosphingolipids showed that B. hyodysenteriae binding to lactotetraosylceramide required an unsubstituted terminal Galß3GlcNAc sequence, while for binding to the B5 pentaosylceramide the terminal Galα3Galß4GlcNAc sequence is the minimum element recognized by the bacteria. Binding of Griffonia simplicifolia IB4 lectin to pig colon tissue sections from healthy control pig and B. hyodysenteriae infected pigs showed that in the healthy pigs the Galα3Gal epitope was mainly present in the lamina propria. In contrast, in four out of five pigs with swine dysentery there was an increased expression of Galα3Gal in the goblet cells and in the colonic crypts, where B. hyodysenteriae also was present. The one pig that had recovered by the time of necropsy had the Galα3Gal epitope only in the lamina propria. These data are consistent with a model where a transient increase in the carbohydrate sequence recognized by the bacteria occur in colonic mucins during B. hyodysenteriae infection, suggesting that the mucins may act as decoys contributing to clearance of the infection. These findings may lead to novel strategies for treatment of B. hyodysenteriae induced swine dysentery.


Assuntos
Brachyspira hyodysenteriae , Disenteria , Infecções por Bactérias Gram-Negativas , Doenças dos Suínos , Suínos , Animais , Brachyspira hyodysenteriae/metabolismo , Doenças dos Suínos/microbiologia , Colo , Mucinas/metabolismo , Disenteria/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia
2.
Glycobiology ; 32(5): 391-403, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34972864

RESUMO

The heat-labile enterotoxins of Escherichia coli and cholera toxin of Vibrio cholerae are related in structure and function. Each of these oligomeric toxins is comprised of one A polypeptide and five B polypeptides. The B-subunits bind to gangliosides, which are followed by uptake into the intoxicated cell and activation of the host's adenylate cyclase by the A-subunits. There are two antigenically distinct groups of these toxins. Group I includes cholera toxin and type I heat-labile enterotoxin of E. coli; group II contains the type II heat-labile enterotoxins of E. coli. Three variants of type II toxins, designated LT-IIa, LT-IIb and LT-IIc have been described. Earlier studies revealed the crystalline structure of LT-IIb. Herein the carbohydrate binding specificity of LT-IIc B-subunits was investigated by glycosphingolipid binding studies on thin-layer chromatograms and in microtiter wells. Binding studies using a large variety of glycosphingolipids showed that LT-IIc binds with high affinity to gangliosides with a terminal Neu5Acα3Gal or Neu5Gcα3Gal, e.g. the gangliosides GM3, GD1a and Neu5Acα3-/Neu5Gcα3--neolactotetraosylceramide and Neu5Acα3-/Neu5Gcα3-neolactohexaosylceramide. The crystal structure of LT-IIc B-subunits alone and with bound LSTd/sialyl-lacto-N-neotetraose d pentasaccharide uncovered the molecular basis of the ganglioside recognition. These studies revealed common and unique functional structures of the type II family of heat-labile enterotoxins.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxina da Cólera/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/metabolismo , Temperatura Alta
3.
Virulence ; 11(1): 381-390, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32245341

RESUMO

The ability to adhere via colonization factors to specific receptors located on the intestinal mucosa is a key virulence factor in enterotoxigenic Escherichia coli (ETEC) pathogenesis. Here, the potential glycosphingolipid receptors of the novel human ETEC colonization factor CS30 were examined by binding of CS30-expressing bacteria to glycosphingolipids on thin-layer chromatograms. We thereby found a highly specific binding of CS30-expressing bacteria to a fast-migrating acid glycosphingolipid of human and porcine small intestine, while no binding was obtained with a mutant ETEC strain unable to express CS30 fimbriae. The CS30 binding glycosphingolipid from human small intestine was isolated and characterized by mass spectrometry as sulfatide (SO3-3Galß1Cer). Comparative binding studies using sulfatides with different ceramide compositions gave a preferential binding of CS30 to sulfatide with d18:1-h24:0 ceramide. This ceramide species of sulfatide was also isolated from human small intestine and characterized by mass spectrometry and antibody binding. These studies implicate sulfatide as candidate receptor for mediating attachment of CS30-fimbriated ETEC to human and porcine small intestinal cells. Our findings may be a basis for designing receptor saccharide analogues for inhibition of the intestinal adhesion of CS30-expressing E. coli.


Assuntos
Aderência Bacteriana , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Mucosa Intestinal/microbiologia , Intestino Delgado/microbiologia , Sulfoglicoesfingolipídeos/metabolismo , Animais , Ceramidas/análise , Proteínas de Fímbrias/genética , Glicoesfingolipídeos/metabolismo , Humanos , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Suínos , Fatores de Virulência/metabolismo
4.
Biochem J ; 473(21): 3923-3936, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562297

RESUMO

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galß4GlcNAcß3Galß4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Enterotoxinas/química , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácidos Siálicos/metabolismo , Sítios de Ligação , Gangliosídeos/química , Gangliosídeos/metabolismo , Intestino Delgado/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Ácidos Siálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...