Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 61(4): 399-408, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21516935

RESUMO

A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.


Assuntos
Nanopartículas/análise , Emissões de Veículos/análise , Automóveis , Simulação por Computador , Monitoramento Ambiental/métodos , Tamanho da Partícula , Software
2.
J Air Waste Manag Assoc ; 59(6): 695-703, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19603737

RESUMO

To improve the accuracy, reliability, and representativeness of emission factors, 10 European laboratories worked together to study the influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer of 4 main categories: driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters. The results are based on (1) literature synthesis, (2) approximately 2700 specific tests with 183 vehicles, and (3) the reprocessing of more than 900 tests. These tests concern the regulated atmospheric pollutants and pre-Euro to Euro 4 vehicles. Of the 20 parameters analyzed, 7 seemed to have no effect, 7 were qualitatively influential, and 6 were highly influential (gearshift strategy, vehicle mileage, ambient temperature, humidity, dilution ratio, and driving cycle). The first four of the six were able to have correction factors developed for them. The results allow for the design of recommendations or guidelines for the emission factor measurement method.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Europa (Continente) , Gasolina , Veículos Automotores , Veículos Farmacêuticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA