Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38883748

RESUMO

Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aß since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aß assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aß40 and Aß42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdk gene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and aggregated proteome in these mouse models indicates significant accumulation of Aß and Aß-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.

2.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356496

RESUMO

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo
3.
Int J Biol Macromol ; 199: 181-188, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34973990

RESUMO

Intensive research in the field of protein aggregation confirmed that the deposition of amyloid fibrils of proteins are the major cause for the development of various neurotoxic and neurodegenerative diseases, which could be controlled by ensuring the efficient inhibition of aggregation using anti aggregation strategies. Herein, we elaborated the anti amyloidogenic potential of Sunset Yellow (SY) dye against Human Serum Albumin (HSA) fibrillogenesis utilising different biophysical, computational and microscopic techniques. The inhibitory effect of sunset yellow was confirmed by Rayleigh Light Scattering (RLS) measurements along with different dye binding assays (ANS, ThT and CR) by showing concentration dependent reduction in scattering intensity and fluorescence intensity respectively. Further, destabilization and anti fibrillation activity of HSA aggregates were characterized through spectroscopic techniques like Circular Dichroism (CD) and other microscopic techniques like Transmission Electron Microscopy (TEM) for elucidating the structural properties. The SDS-PAGE was also carried out that render the disaggregation effect of the dye on the protein. Moreover, Molecular Docking studies revealed the binding parameters justifying the stable protein-dye complex. Simulation studies were also performed accordingly. Thus, this dye which is used as food additive can serve as a potential aggregation inhibiting agent that can aid in the prevention of amyloidogenic diseases.


Assuntos
Naturologia , Albumina Sérica Humana , Amiloide/química , Compostos Azo , Dicroísmo Circular , Humanos , Simulação de Acoplamento Molecular , Agregados Proteicos , Albumina Sérica Humana/química
4.
J Biol Chem ; 297(2): 100953, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34270957

RESUMO

Phenol-soluble modulins (PSMs), such as α-PSMs, ß-PSMs, and δ-toxin, are virulence peptides secreted by different Staphylococcus aureus strains. PSMs are able to form amyloid fibrils, which may strengthen the biofilm matrix that promotes bacterial colonization of and extended growth on surfaces (e.g., cell tissue) and increases antibiotic resistance. Many components contribute to biofilm formation, including the human-produced highly sulfated glycosaminoglycan heparin. Although heparin promotes S. aureus infection, the molecular basis for this is unclear. Given that heparin is known to induce fibrillation of a wide range of proteins, we hypothesized that heparin aids bacterial colonization by promoting PSM fibrillation. Here, we address this hypothesis using a combination of thioflavin T-fluorescence kinetic studies, CD, FTIR, electron microscopy, and peptide microarrays to investigate the mechanism of aggregation, the structure of the fibrils, and identify possible binding regions. We found that heparin accelerates fibrillation of all α-PSMs (except PSMα2) and δ-toxin but inhibits ß-PSM fibrillation by blocking nucleation or reducing fibrillation levels. Given that S. aureus secretes higher levels of α-PSM than ß-PSM peptides, heparin is therefore likely to promote fibrillation overall. Heparin binding is driven by multiple positively charged lysine residues in α-PSMs and δ-toxins, the removal of which strongly reduced binding affinity. Binding of heparin did not affect the structure of the resulting fibrils, that is, the outcome of the aggregation process. Rather, heparin provided a scaffold to catalyze or inhibit fibrillation. Based on our findings, we speculate that heparin may strengthen the bacterial biofilm and therefore enhance colonization via increased PSM fibrillation.


Assuntos
Peptídeos , Staphylococcus aureus , Toxinas Bacterianas , Biofilmes/crescimento & desenvolvimento , Cinética , Peptídeos/metabolismo , Virulência
5.
Microorganisms ; 9(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430169

RESUMO

The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.

6.
Elife ; 92020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259287

RESUMO

The infective ability of the opportunistic pathogen Staphylococcus aureus, recognized as the most frequent cause of biofilm-associated infections, is associated with biofilm-mediated resistance to host immune response. Phenol-soluble modulins (PSM) comprise the structural scaffold of S. aureus biofilms through self-assembly into functional amyloids, but the role of individual PSMs during biofilm formation remains poorly understood and the molecular pathways of PSM self-assembly are yet to be identified. Here we demonstrate high degree of cooperation between individual PSMs during functional amyloid formation. PSMα3 initiates the aggregation, forming unstable aggregates capable of seeding other PSMs resulting in stable amyloid structures. Using chemical kinetics we dissect the molecular mechanism of aggregation of individual PSMs showing that PSMα1, PSMα3 and PSMß1 display secondary nucleation whereas PSMß2 aggregates through primary nucleation and elongation. Our findings suggest that various PSMs have evolved to ensure fast and efficient biofilm formation through cooperation between individual peptides.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/química , Cinética , Fenol/química , Agregados Proteicos , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade , Solventes/química , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Relação Estrutura-Atividade , Fatores de Virulência/química
8.
Int J Biol Macromol ; 134: 1022-1037, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128177

RESUMO

Protein and peptides are converted from their soluble forms into highly ordered fibrillar aggregates under various conditions inside the cell. Such transitions confer diverse neurodegenerative diseases including Alzheimer's disease, Huntington's disease Prion's disease, Parkinson's disease, polyQ and share abnormal folding of potentially cytotoxic protein species linked with degeneration and death of precise neuronal populations. Presently, major advances are made to understand and get detailed insight into the structural basis and mechanism of amyloid formation, cytotoxicity and therapeutic approaches to combat them. Here we highlight classifies and summarizes the detailed overview of protein misfolding and aggregation at their molecular level including the factors that promote protein aggregation under in vivo and in vitro conditions. In addition, we describe the recent technologies that aid the characterization of amyloid aggregates along with several models that might be responsible for amyloid induced cytotoxicity to cells. Overview on the inhibition of amyloidosis by targeting different small molecules (both natural and synthetic origin) have been also discussed, that provides important approaches to identify novel targets and develop specific therapeutic strategies to combat protein aggregation related neurodegenerative diseases.


Assuntos
Amiloide/química , Amiloide/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Dobramento de Proteína , Amiloide/toxicidade , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Proteínas Amiloidogênicas/toxicidade , Amiloidose/tratamento farmacológico , Amiloidose/etiologia , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Terapia de Alvo Molecular , Pressão , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Dobramento de Proteína/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade , Temperatura
9.
J Biomol Struct Dyn ; 37(6): 1390-1401, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29669491

RESUMO

Alpha1-acid glycoprotein (AAG) is a major acute phase protein of human plasma. Binding of clofazimine to AAG is investigated using optical spectroscopy and molecular docking tools. We found significant quenching of intrinsic fluorescence of AAG upon the binding of clofazimine, binding mode is static with binding constant of 3.52 × 104at 298 K. The Gibbs free energy change is found to be negative for the interaction of clofazimine with AAG indicating spontaneity of the binding process. Binding of clofazimine induced ordered structure in protein and lead to molecular compaction. Molecular docking results indicate the binding site is located in the central beta barrel, hydrogen bonding and hydrophobic interactions are main bonding forces between AAG-clofazimine.


Assuntos
Fenômenos Biofísicos , Clofazimina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Orosomucoide/química , Sítios de Ligação , Clofazimina/metabolismo , Humanos , Estrutura Molecular , Orosomucoide/metabolismo , Ligação Proteica , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
10.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 275-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30312771

RESUMO

Protein aggregation have been associated with several human neurodegenerative diseases, such as Parkinson's and Alzheimer's diseases. There are several small molecules that can reduce aggregation of proteins. The present study aimed to test the hypothesis that the application of more than one inhibitor either simultaneously or consecutively may result in more efficient inhibition of protein aggregation. To this end, the anti-amyloidogenic behaviour of benserazide hydrochloride (BH) and levodopa (LD) individually and in combination (BH + LD) was investigated using various biophysical, microscopic, and computational techniques. BH, LD, and BH + LD treatments showed inhibitory effects on protein aggregation and had the ability to minimise the amyloid-induced cytotoxicity in human neuroblastoma cell line (SH-SY5Y). The two drugs in combination showed synergism (combination index, CI < 1) between them. These drugs also destabilised the preformed fibrils of human serum albumin (HSA). Our studies consistently showed that the BH + LD treatment showed highest efficacy towards inhibition and disaggregation of amyloid fibrils in comparison to treatment with BH and LD individually. Therefore, application of drugs in combination against fibrillogenesis may represent a new route for development of means for prevention or delaying of the aggregation-related diseases.


Assuntos
Amiloide/metabolismo , Benserazida/farmacologia , Dopaminérgicos/farmacologia , Levodopa/farmacologia , Agregados Proteicos/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Doença de Parkinson/tratamento farmacológico
12.
Int J Biol Macromol ; 118(Pt B): 1584-1593, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29981827

RESUMO

Misfolded proteins that escape cellular quality control check lay the foundation for several progressively widespread neurodegenerative diseases, diabetes and others. Here, crotonic and citric acid are employed to study aggregation behaviour of hemoglobin (Hb). A systematic investigation on varying concentrations of acids from 0 to 60 mM on Hb gives an idea that transition is taking place in the vicinity of 10-30 mM. Hb showed increased intrinsic Trp fluorescence in the presence of both acids. A red shift of 10 nm in presence of citric acid contrary to a blue shift of 5 nm in presence of crotonic acid is observed. ANS and ThT fluorescence marked aggregation at 50 mM, supported by Congo red and Soret absorbance spectroscopy. CD, RLS and DLS studies also validate the findings. Molecular docking analysis exhibited the binding mode of Hb with acids. Aggregates were dense, beaded structure as visualised under TEM. Crotonic and citric acid at 20 and 30 mM, respectively, induced structural changes in Hb which transmutes to aggregate at higher concentration. These alterations remained almost constant and no significant changes were observed on increasing concentration further. Also, crotonic acid is more noxious, as it instigates conformational alterations at lower concentration than citric acid.


Assuntos
Ácidos Carboxílicos/farmacologia , Hemoglobinas/química , Agregados Proteicos/efeitos dos fármacos , Animais , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Bovinos , Hemoglobinas/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
13.
J Cell Biochem ; 119(5): 3945-3956, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29350433

RESUMO

Protein misfolding and aggregation lead to amyloid generation that in turn may induce cell membrane disruption and leads to cell apoptosis. In an effort to prevent or treat amyloidogenesis, large number of studies has been paying attention on breakthrough of amyloid inhibitors. In the present work, we aim to access the effect of two drugs, that is, acetylsalicylic acid and 5-amino salicylic acid on insulin amyloids by using various biophysical, imaging, cell viability assay, and computational approaches. We established that both drugs reduce the turbidity, light scattering and fluorescence intensity of amyloid indicator dye thioflavin T. Premixing of drugs with insulin inhibited the nucleation phase and inhibitory potential was boosted by increasing the concentration of the drug. Moreover, addition of drugs at the studied concentrations attenuated the insulin fibril induced cytotoxicity in breast cancer cell line MDA-MB-231. Our results highlight the amino group of salicylic acid exhibited enhanced inhibitory effects on insulin fibrillation in comparison to acetyl group. It may be due to presence of amino group that helps it to prolong the nucleation phase with strong binding as well as disruption of aromatic and hydrophobic stacking that plays a key role in amyloid progression.


Assuntos
Amiloide , Insulina , Mesalamina/química , Ácido Salicílico/química , Amiloide/química , Amiloide/farmacologia , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Insulina/química , Insulina/farmacologia
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 194: 194-201, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29351859

RESUMO

Structural alterations in proteins under oxidative stress have been widely implicated in the immuno-pathology of various disorders. This study has evaluated the extent of damage in the conformational characteristics of IgG by hydroxyl radical (OH) and studied its implications in the immuno-pathology of rheumatoid arthritis (RA). Using various biophysical and biochemical techniques, changes in aromatic microenvironment of the IgG and the protein aggregation became evident after treatment with OH. The SDS-PAGE study confirmed the protein aggregation while far ultraviolet circular dichroism spectroscopy (Far-UV CD) and fourier transform infrared spectroscopy (FTIR) inferred towards the alterations in secondary structure of IgG under OH stress. Dynamic light scattering showed that the modification increased the hydrodynamic radius and polydispersity of IgG. The free arginine and lysine content reduced upon modification. OH induced aggregation was confirmed by enhanced thioflavin-T (ThT) fluorescence and red shift in the congo red (CR) absorbance. The study on experimental animals reiterates the earlier findings of enhanced immunogenicity of OH treated IgG (OH-IgG) compared to that of native IgG. OH-IgG strongly interacted with the antibodies derived from the serum of 80 rheumatoid arthritis (RA) patients. The overwhelming and strong tendency of OH-IgG to bind the antibodies derived from the serum of RA patients points towards the modification of IgG under patho-physiological conditions in RA that generate neo-epitopes and eventually cause the generation of auto antibodies that circulate in the patient sera. Further studies on this aspect may possibly lead to the development of a biomarker for RA.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/imunologia , Radical Hidroxila/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Autoanticorpos/sangue , Estudos de Casos e Controles , Humanos , Oxirredução , Estresse Oxidativo
15.
Int J Biol Macromol ; 106: 1115-1129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28890370

RESUMO

This review article summarises the possible mechanisms of the protein-ligand interaction, folding, misfolding, aggregation and inhibition of protein aggregates. Under certain stressed condition the folding process deviates from its path and results into misfolding and aggregation of proteins. So aggregates have to be inhibited in order to cure the diseases. In some cases of protein-ligand interaction studies we have seen that the interaction of a protein with more than one ligand may show both type of quenching mechanisms i.e. dynamic as well as static quenching rather than single type of quenching mechanism, that result can be entirely different by the result of binding study utilising single ligand. So, likewise it is hypothesized that if the aggregates are inhibited by using more than one inhibitor may give more fruitful results rather than application of single inhibitor in inhibition and disaggregation of the preformed aggregates. Therefore, we have hypothesized mechanisms for the inhibition of protein aggregates that may assist in curing the neurodegenerative diseases. Thus, besides the mechanism of protein-ligand interaction, folding, misfolding and aggregation; the hypothesized mechanisms for the inhibition of protein aggregates may show new route to researchers either directly or indirectly in treating the diseases.


Assuntos
Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Proteínas/química , Humanos , Ligantes , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Agregação Patológica de Proteínas/patologia , Dobramento de Proteína , Proteínas/metabolismo
16.
Int J Biol Macromol ; 106: 851-863, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28823512

RESUMO

Increasing evidence proposed that amyloid deposition by proteins play a crucial role in an array of neurotoxic and degenerative disorders like Parkinson's disease, systemic amyloidosis etc, that could be controlled by anti-aggregation methodologies which either inhibit or disaggregate such toxic aggregates. The present work targets the amyloid inhibiting and disaggregating potential of promethazine (PRM) against human insulin (HI) and human lysozyme (HL) fibrillogenesis. Biophysical techniques like Rayleigh scattering measurements (RLS), Thioflavin T (ThT) and 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence measurement, circular dichroism (CD) and dynamic light scattering (DLS) measurements illustrated the inhibitory action of PRM. The half maximal inhibitory concentration (IC50) of PRM for HI and HL was estimated to be 114.81±1.21µM and 186.20±1.03µM, respectively. Microscopic techniques revealed the absence of fibrillar structures when HI and HL was co-incubated with PRM. Cytoprotective behavior of PRM was investigated by cell based cytotoxicity assay performed on SH-SY5Y neuronal cell lines. The half maximal disaggregation concentration (DC50) was calculated as 21.37±0.89µM and 45.70±0.76µM, signifying that PRM is much potent to disaggregate pre formed fibrils rather than to inhibit fibrillation. Thus, PRM could be beneficial as therapeutic agent that can aid in the cure of amyloid related diseases.


Assuntos
Amiloide/efeitos dos fármacos , Amiloidose/tratamento farmacológico , Prometazina/farmacologia , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Amiloide/química , Proteínas Amiloidogênicas/antagonistas & inibidores , Proteínas Amiloidogênicas/química , Amiloidose/patologia , Naftalenossulfonato de Anilina/química , Benzotiazóis , Dicroísmo Circular , Difusão Dinâmica da Luz , Fluorescência , Humanos , Insulina/química , Muramidase/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Tiazóis/química
17.
J Biomol Struct Dyn ; 36(1): 54-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27910732

RESUMO

Isoprenaline hydrochloride is a potential cardiovascular drug helps in the smooth functioning of the heart muscles. So, we have performed the binding study of ISO with BSA. This study was investigated by UV absorption, fluorescence, synchronous fluorescence, circular dichroism, etc. The analysis of intrinsic fluorescence data showed the low binding affinity of ISO. The binding constant Kb was 2.8 × 103 M-1 and binding stoichiometry (n) was approximately one and the Gibb's free energy change at 310 K was determined to be -8.69 kcal mol-1. Negative Gibb's free energy change shows the spontaneity of the BSA and ISO interaction. We have found ISO-induced alternation in the UV absorption, synchronous fluorescence and CD spectra in the absence and presence of the quencher indicates the complex formation. In synchronous fluorescence, red shift was obtained because of the complex formation of BSA and ISO. The distance (r) between the BSA (donor) and ISO (acceptor) was 2.89 nm, determined by FRET. DLS measurements interpreted complex formation due to the reduction in hydrodynamic radii of the protein in the presence of the drug. The binding site of ISO was found to be nearer to Trp 134 with the help of molecular docking and the ΔG° was found to be -10.2 kcal mol-1. The esterase activity result suggests that ISO acts as competitive inhibitor. Thus, this study would help to determine the binding capacity of the drug to the protein which may indicate the efficiency of diffusion of ISO into the blood for the treatment of heart diseases.


Assuntos
Dicroísmo Circular/métodos , Isoproterenol/química , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Espectrofotometria/métodos , Algoritmos , Animais , Sítios de Ligação , Cardiotônicos/química , Cardiotônicos/metabolismo , Bovinos , Difusão Dinâmica da Luz , Isoproterenol/metabolismo , Cinética , Ligação Proteica , Soroalbumina Bovina/metabolismo , Termodinâmica
18.
J Biomol Struct Dyn ; 36(10): 2543-2557, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28768117

RESUMO

Protein aggregation into oligomers and mature fibrils are associated with more than 20 diseases in humans. The interactions between cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) with varying alkyl chain lengths and bovine liver catalase (BLC) were examined by various biophysical approaches. The delicate coordination of electrostatic and hydrophobic interactions with protein, play imperative role in aggregation. In this article, we have reconnoitered the relation between charge, hydrophobicity and cationic surfactants DTAB and TTAB on BLC at pH 7.4 and 9.4 which are two and four units above pI, respectively. We have used techniques like turbidity, Rayleigh light scattering, far-UV CD, ThT, ANS, Congo red binding assay, DLS, and transmission electron microscopy. The low concentration ranges of DTAB (0-600 µM) and TTAB (0-250 µM) were observed to increase aggregation at pH 9.4. Nevertheless, at pH 7.4 only TTAB was capable of inducing aggregate. DTAB did not produce any significant change in secondary structure at pH 7.4 suggestive of the role of respective charges on surfactants and protein according to the pI and alkyl chain length. The morphology of aggregates was further determined by TEM, which proved the existence of a fibrillar structure. The surfactants interaction with BLC was primarily electrostatic as examined by ITC. Our work demystifies the critical role of charge as well as hydrophobicity in amyloid formation.


Assuntos
Fenômenos Biofísicos , Catalase/química , Tensoativos/química , Animais , Benzotiazóis/metabolismo , Calorimetria , Catalase/ultraestrutura , Cátions , Bovinos , Dicroísmo Circular , Difusão Dinâmica da Luz , Hidrodinâmica , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência , Termodinâmica , Compostos de Trimetil Amônio/química
19.
Int J Biol Macromol ; 109: 1132-1139, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157902

RESUMO

The current study comprises of an inclusive biophysical study, enlightening the binding of L-3, 4-dihydroxyphenylalanine (l-Dopa) with human lysozyme (HL) and hen egg white lysozyme (HEWL). Spectroscopic and molecular docking tools have been utilized to study the interaction of l-Dopa with both HL and HEWL. Spectrofluorimetric measurements exhibited that l-Dopa quenched the HL and HEWL intrinsic fluorescence. A binding constant (Kb) of ∼104M-1 for both HL and HEWL was obtained, asserting a significant binding. Negative value of ΔG affirmed that the reaction between proteins and l-Dopa was spontaneous. Far-UV CD spectra revealed a boost to the proteins helical content in the presence of l-Dopa. Furthermore, DLS measurements displayed the decrease in hydrodynamic radii (Rh) of HL and HEWL in the presence of l-Dopa. Molecular docking studies established that l-Dopa formed complexes with both the proteins through hydrogen bonding and hydrophobic interaction. The present study characterizing the l-Dopa interaction with lysozyme could be noteworthy in realizing both pharmaco-dynamics and/or -kinetics of drugs used in various diseases.


Assuntos
Fenômenos Biofísicos , Levodopa/química , Muramidase/química , Animais , Dicroísmo Circular , Difusão Dinâmica da Luz , Humanos , Levodopa/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Muramidase/metabolismo , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral
20.
J Biomol Struct Dyn ; 36(5): 1261-1273, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28399705

RESUMO

The aggregation phenomenon (amyloid and amorphous) is associated with several pathological complications in human, such as Alzheimer's, Parkinson's, Huntington, Cataract diseases, and Diabetes mellitus type 2. In the present study we are offering evidence and breaking the general belief with regard to the polyphenols action as protein aggregate inhibitors. Herein we confirm that tannic acid (TA) is not only an amyloid inducer, but also it switches one type of conformation, ultimately morphology, into another. We ascertain based on our findings that aggregates are not rigid structures and the stability can be challenged under certain conditions. This study also confirms that unfolded and amorphous aggregates can serve as precursors of amyloids and TA interactions with unordered aggregates (amorphous) bringing orderliness in the conformation via amyloidosis. The shifting of unordered conformation toward orderliness is governed by the modulation in surface hydrophobic patches in Concanavalin A (ConA). Hence, a degree of exposed hydrophobic cluster can be claimed as a strong parameter to detect and distinguish the native, amorphous and both types of amyloids. Turbidity and Rayleigh light scattering measurements followed similar pattern while Thioflavin T and 1-anilino-8-naphthalene sulfonate fluorescence assays of the binding with amorphous and amyloid followed an inverse relation. Electron microscopic studies revealed the morphological variation in the ConA at 65°C as amorphous while the ConA treated with TA followed by heat treatment at 65°C was defined as amyloid in nature. Interestingly for the first time we are reporting the slight agglutination activity by the ConA amyloids.


Assuntos
Amiloide/química , Fenômenos Biofísicos , Concanavalina A/química , Conformação Proteica , Taninos/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Benzotiazóis/química , Agregados Proteicos/efeitos dos fármacos , Análise Espectral , Taninos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...