Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(1): 137-152, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-32710115

RESUMO

The chloroplastic 2-oxaloacetate (OAA)/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of OAA. Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate for the GS/GOGAT (glutamine synthetase/glutamate synthase) reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis: OAA resulting from phosphoenolpyruvate carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-malate dehydrogenase, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. To engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, overexpression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid content, tricarboxylic acid cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous overexpression of ZmDiT2. Implications for engineering C4 rice are discussed.


Assuntos
Oryza , Carbono/metabolismo , Cloroplastos/metabolismo , Homeostase , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Nitrogênio/metabolismo , Oryza/genética , Fotossíntese
2.
Methods Mol Biol ; 1653: 83-96, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28822127

RESUMO

The photorespiratory cycle is distributed over four cellular compartments, the chloroplast, peroxisomes, cytoplasm, and mitochondria. Shuttling of photorespiratory intermediates between these compartments is essential to maintain the function of photorespiration. Specific transport proteins mediate the transport across biological membranes and represent important components of the cellular metabolism. Although significant progress was made in the last years on identifying and characterizing new transport proteins, the overall picture of intracellular metabolite transporters is still rather incomplete. The photorespiratory cycle requires at least 25 transmembrane transport steps; however to date only plastidic glycolate/glycerate transporter and the accessory 2-oxoglutarate/malate and glutamate/malate transporters as well as the mitochondrial transporter BOU1 have been identified. The characterization of transport proteins and defining their substrates and kinetics are still major challenges.Here we present a detailed set of protocols for the in vitro characterization of transport proteins. We provide protocols for the isolation of recombinant transport protein expressed in E. coli or Saccharomyces cerevisiae and the extraction of total leaf membrane protein for in vitro analysis of transporter proteins. Further we explain the process of reconstituting transport proteins in artificial lipid vesicles and elucidate the details of transport assays.


Assuntos
Arabidopsis/metabolismo , Bioensaio , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Arabidopsis/química , Arabidopsis/genética , Membrana Celular/química , Cloroplastos/química , Cloroplastos/genética , Cromatografia em Gel/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/química , Oryza/genética , Oryza/metabolismo , Consumo de Oxigênio/fisiologia , Pisum sativum/química , Pisum sativum/genética , Pisum sativum/metabolismo , Fosfatidilcolinas/química , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolipídeos/química , Proteolipídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triticum/química , Triticum/genética , Triticum/metabolismo
3.
Plant Physiol ; 166(2): 753-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104722

RESUMO

Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Citosol/enzimologia , Glucose-6-Fosfato Isomerase/metabolismo , Folhas de Planta/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Clorofila/metabolismo , Clorofila A , DNA Bacteriano/genética , Isoenzimas/metabolismo , Mutação , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...