Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(1-2): 015104, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412248

RESUMO

The characterization of intermittency in turbulence has its roots in the refined similarity hypotheses of Kolmogorov, and if no proper definition is to be found in the literature, statistical properties of intermittency were studied and models were developed in an attempt to reproduce it. The first contribution of this work is to propose a requirement list to be satisfied by models designed within the Lagrangian framework. Multifractal stochastic processes are a natural choice to retrieve multifractal properties of the dissipation. Among them, we investigate the Gaussian multiplicative chaos formalism, which requires the construction of a log-correlated stochastic process X_{t}. The fractional Gaussian noise of Hurst parameter H=0 is of great interest because it leads to a log correlation for the logarithm of the process. Inspired by the approximation of fractional Brownian motion by an infinite weighted sum of correlated Ornstein-Uhlenbeck processes, our second contribution is to propose a stochastic model: X_{t}=∫_{0}^{∞}Y_{t}^{x}k(x)dx, where Y_{t}^{x} is an Ornstein-Uhlenbeck process with speed of mean reversion x and k is a kernel. A regularization of k(x) is required to ensure stationarity, finite variance, and logarithmic autocorrelation. A variety of regularizations are conceivable, and we show that they lead to the aforementioned multifractal models. To simulate the process, we eventually design a new approach relying on a limited number of modes for approximating the integral through a quadrature X_{t}^{N}=∑_{i=1}^{N}ω_{i}Y_{t}^{x_{i}}, using a conventional quadrature method. This method can retrieve the expected behavior with only one mode per decade, making this strategy versatile and computationally attractive for simulating such processes, while remaining within the proposed framework for a proper description of intermittency.

2.
Phys Rev Lett ; 122(12): 124504, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978094

RESUMO

To generate or maintain a turbulent flow, one needs to introduce kinetic energy. This energy injection necessarily fluctuates and these power fluctuations act on all turbulent excited length scales. If the power is injected using forces proportional to the velocity, such as those common in shear flows, or with a force acting at the largest scales only, the spectrum of these fluctuations is shown to have a universal inertial range, proportional to the energy spectrum.

3.
Eur Phys J E Soft Matter ; 40(1): 13, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28124764

RESUMO

We investigate the transient and stationary buoyant motion of the Rayleigh-Bénard instability when the fluid layer is subjected to a vertical, steady magnetic field. For Rayleigh number, Ra, in the range 103-106, and Hartmann number, Ha, between 0 and 100, we performed three-dimensional direct numerical simulations. To predict the growth rate and the wavelength of the initial regime observed with the numerical simulations, we developed the linear stability analysis beyond marginal stability for this problem. We analyzed the pattern of the flow from linear to nonlinear regime. We observe the evolution of steady state patterns depending on [Formula: see text] and Ha. In addition, in the nonlinear regime, the averaged kinetic energy is found to depend on Ra and to be independent of Ha in the studied range.

4.
Phys Rev E ; 96(3-1): 033103, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29347022

RESUMO

We study the effect of an impressing AC magnetic field at the bottom of a liquid metal layer of thickness h. In this situation the fluid is set in motion by the buoyancy forces caused by internal heat sources. The heat sources, caused by the Joule effect induced by the AC field, present an exponentially decaying profile, with characteristic length δ. As the magnetic field is horizontal, the Lorentz force has no influence on the dynamics of the system since it contributes only to the magnetic pressure. We propose an analysis of both the transient and fully developed regimes using linear stability analysis (LSA) and direct numerical simulations (DNSs). The transient period is governed by the temporal evolution of the temperature field as well as the development of the convective instability, which can be concomitant and therefore requires adopting a transient LSA algorithm to track these two effects. The DNSs have been performed for various distributions of the heat sources and various total heat input. This corresponds to independently varying δ/h in the range 0.04≤δ/h≤0.45 and a Rayleigh number 1.1×10^{4}≤Ra≤1.2×10^{5}. We observe the relaxation of the temperature up to the steady conductive profile before the transition to the nonlinear regime when Ra is small, whereas for larger Ra, nonlinear effects appear during the relaxation of the temperature profile. The unsteadiness of the temperature field significantly alters the development of the instability because of a much smaller growth rate. Surprisingly, we observe that δ/h has only a limited influence on averaged quantities as well as on the patterns for both the linear and nonlinear regimes. This comes with the fact that the profiles present an apparent reflectional symmetry, despite the asymmetry of the governing equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...