Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963530

RESUMO

The development of new catalytic nanomaterials following sustainability criteria both in their composition and in their synthesis process is a topic of great current interest. The purpose of this work was to investigate the preparation of nanocatalysts derived from the zirconium metal-organic framework UiO-66 obtained under friendly conditions and supporting dispersed species of non-noble transition elements such as Cu, Co, and Fe, incorporated through a simple incipient wetness impregnation technique. The physicochemical properties of the synthesized solids were studied through several characterization techniques and then they were investigated in reactions of relevance for environmental pollution control, such as the oxidation of carbon monoxide in air and in hydrogen-rich streams (COProx). By controlling the atmospheres and pretreatment temperatures, it was possible to obtain active catalysts for the reactions under study, consisting of Cu-based UiO-66-, bimetallic CuCo-UiO-66-, and CuFe-UiO-6-derived materials. These solids represent new alternatives of nanostructured catalysts based on highly dispersed non-noble active metals.

2.
Chemphyschem ; 20(23): 3201-3209, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562667

RESUMO

The physicochemical modification of Metal-Organic Frameworks (MOFs) is a current challenge in the search to improve their performance in different technological applications. In this work we analyze the post-synthetic modification of ZIF-8 crystals and films through a simple and clean treatment that involves the exposure to a UV lamp under environmental conditions. It is demonstrated that a short treatment alters the MOF structure and chemistry, providing a modified ZIF-8 due to partial disconnections of its structure which increase the amount of terminal surface species such as Zn-OH and -C=N-H, but without compromising the overall MOF structure, specific surface area or thermal stability. Additionally, it leads to changes in several properties of the ZIF-8, such as its capacity to accumulate charge through pseudocapacitive processes, its interaction with nitric oxide and its light absorption behavior. This strategy of modifying ZIF-8 without the use of chemicals through a gentle disconnection of its own structure could open new perspectives of post-functionalization of crystals and films of ZIF-8 to be used in a wide range of applications.

3.
J Colloid Interface Sci ; 424: 37-43, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24767495

RESUMO

The effect of the solvent on the synthesis process and on the nanocrystal characteristics of the zeolitic imidazolate framework-8 (ZIF-8) was investigated. A synthesis protocol at room temperature employing a series of aliphatic alcohols, water, dimethylformamide and acetone was employed. The results show that the solvent modifies the evolution of the reaction, altering the crystallization rates and nanocrystal sizes. Its hydrogen bond donation ability is the main factor that governs this effect. More precisely, the solvent modulates the formation of ZIF-8 nanocrystals with sizes in the range between 15 and 42 nm. When synthesized in alcohol and acetone, these nanocrystals form globular aggregates with sizes between 130 and 420 nm. In contrast, under the same synthesis conditions, when using water or dimethylformamide the ZIF phase is not developed. In alcohols other than methanol, the crystals develop pill-shaped morphologies with poorly defined facets. Moreover, a markedly fast growing kinetics is verified in these alcohols, leading to an ultra-fast crystallization of ZIF-8 in about 60s. These findings provide new information about the role of the solvent in the synthesis process of nanoZIF-8, which can be useful for controlling the crystallization rates and nanocrystal sizes of this material.

4.
Chemphyschem ; 12(15): 2781-5, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21922629

RESUMO

Mixed-matrix membranes (MMMs) were prepared by combinations of two different kinds of porous fillers [metal-organic frameworks (MOFs) HKUST-1 and ZIF-8, and zeolite silicalite-1] and polysulfone. In the search for filler synergy, the MMMs were applied to the separation of CO(2)/N(2), CO(2)/CH(4), O(2)/N(2), and H(2)/CH(4) mixtures and we found important selectivity improvements with the HKUST-1-silicalite-1 system (CO(2)/CH(4) and CO(2)/N(2) separation factors of 22.4 and 38.0 with CO(2) permeabilities of 8.9 and 8.4 Barrer, respectively).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...