Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 6164-6179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300136

RESUMO

We report a density functional theory (DFT) study performed for a set of 66 compounds based on zinc(II) and silicon(IV) phthalocyanines (Pcs) with potential applications in dye-sensitized solar cells (DSSCs). The effect of the metal center (Zn, Si), periplanar and axial substituents, and anchor groups like anhydrous, carboxyl, and catechol on the electronic, optical, photovoltaics, and adsorption properties is investigated. Using the TD-DFT methodology and M06 and CAM-B3LYP functionals, we calculated the absorption spectra on optimized structures and in the solution phase but not on structures relaxed in the solvent. We obtained a strong Q band and a weak Soret band in the UV-Vis region, which are attributed to the transitions of type π-π* as described by the Gouterman orbitals. Q bands calculated show absorption up to 667 nm for ZnPcs and up to 769 nm for SiPcs, suggesting an essential role of the metal atom. The systems have a bathochromic effect in the order of secondary amine > primary amine > hydroxyl > amide > ester. We also found that the anhydrous and carboxyl groups favor absorption at longer wavelengths than the catechol group. The ZnPc systems show a slightly larger electron injection ΔGinj (∼1.1 eV) than SiPcs (∼0.9 eV), with similar values for the three anchor groups. The interaction energies (Eint) between ZnPcs/SiPcs and TiO2 in molecular and periodic configuration and corrected by the counterpoise method indicate that SiPcs predict more negative values than ZnPcs. The anchor group effect is relevant; the carboxyl moiety leads to stronger interactions than the anhydrous moiety. The strategies used could help to identify new photosensitizers for DSSCs.

2.
J Mol Model ; 28(11): 344, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36201064

RESUMO

A new photosensitizer 1-WS55 (dyad) based on two dyes with excellent properties, azulenocyanine (1) and WS55, is proposed at the density functional theory level (M06/def2-SVP). 1 is a dye having a broad NIR absorption (~ 1000 nm), and WS55 is a metal-free organic dye that presents a huge photoelectric conversion efficiency (PCE) of 9.5%. The dyad presents a panchromatic absorption along the UV-Vis-NIR region. It exhibits two intense Q bands (880, 926 nm) in the NIR region, one strong band (672 nm) in the visible region, and several bands in 300-600 nm. Charge transfer bands in the dyad from 1 to WS55 were found in the visible region, which favors the adsorption on an anatase TiO2 surface. The interaction energies dyad (dye)-TiO2 were calculated as a periodic system and corrected by the basis set superposition error. These show better adsorption for the dyad than fragments 1 and WS55. The electron injection calculated from the dye (dyad) to TiO2 suggests an efficient solar energy conversion because of ΔGinj > 0.2 eV. Additionally, calculations performed for the reorganization energy of electrons and holes indicate that the dyad presents the highest charge mobility. In summary, the dyad proposed 1-WS55 constitutes an excellent candidate to be used as a potential photosensitizer for the DSSCs.

3.
Dalton Trans ; 50(8): 2981-2996, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33565528

RESUMO

Push-pull zinc phthalocyanine dyes bearing hexylsulfanyl moieties as electron donors and carboxyethynyl as mono- or di-anchoring groups have been designed, synthesized and tested as sensitizers in dye-sensitized solar cells (DSSCs). The effects of the anchoring groups on the optical, electrochemical and photovoltaic properties were investigated. The incorporation of a carboxyethynyl group in GT23 has a considerable effect on preventing dye aggregation due to its relatively non-planar structure. The mono-anchoring dye bearing a phenyl carboxyethynyl group, GT5, has a higher molar extinction coefficient and sufficient charge injection into the TiO2 conduction band. Therefore, GT5 achieved at least 90% higher power conversion efficiency than the di-anchoring dyes (GT31 and GT32). Time-dependent density functional theory (PBE0/6-31G(d,p)) was also used to calculate the electronic absorption spectra, which predicted very well the measured UV-Vis with an error of up to 0.11 eV for the Q bands and 0.3 eV for the B bands. The longest charge transfer bands are obtained in the visible light region and they correspond to a transfer phthalocyanine core → substituent with a carboxyethynyl group where the absorptions of GT32 (465 nm) and GT31 (461 nm) are red-shifted compared to GT23 (429 nm) and GT5 (441 nm). The interaction energy between the phthalocyanine and a cluster of anatase-TiO2 (H4Ti40O82) was calculated using density functional theory. For all phthalocyanines, the interaction favored is monodentate and corresponds to -O(OH)Ti(TiO2), where the stronger interaction occurs for GT32 (-2.11 eV) and GT31 (-2.25 eV). This study presents the molecular combination of the anchoring groups in zinc phthalocyanine sensitizers, which is one of the effective strategies for improving the performance of DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...