Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stat Biopharm Res ; 12(4): 506-517, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34191983

RESUMO

The world is in the midst of a pandemic. We still know little about the disease COVID-19 or about the virus (SARS-CoV-2) that causes it. We do not have a vaccine or a treatment (aside from managing symptoms). We do not know if recovery from COVID-19 produces immunity, and if so for how long, hence we do not know if "herd immunity" will eventually reduce the risk or if a successful vaccine can be developed - and this knowledge may be a long time coming. In the meantime, the COVID-19 pandemic is presenting enormous challenges to medical research, and to clinical trials in particular. This paper identifies some of those challenges and suggests ways in which machine learning can help in response to those challenges. We identify three areas of challenge: ongoing clinical trials for non-COVID-19 drugs; clinical trials for repurposing drugs to treat COVID-19, and clinical trials for new drugs to treat COVID-19. Within each of these areas, we identify aspects for which we believe machine learning can provide invaluable assistance.

2.
IEEE Trans Biomed Eng ; 66(5): 1477-1490, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30296210

RESUMO

Missing data is a ubiquitous problem. It is especially challenging in medical settings because many streams of measurements are collected at different-and often irregular-times. Accurate estimation of the missing measurements is critical for many reasons, including diagnosis, prognosis, and treatment. Existing methods address this estimation problem by interpolating within data streams or imputing across data streams (both of which ignore important information) or ignoring the temporal aspect of the data and imposing strong assumptions about the nature of the data-generating process and/or the pattern of missing data (both of which are especially problematic for medical data). We propose a new approach, based on a novel deep learning architecture that we call a Multi-directional Recurrent Neural Network that interpolates within data streams and imputes across data streams. We demonstrate the power of our approach by applying it to five real-world medical datasets. We show that it provides dramatically improved estimation of missing measurements in comparison to 11 state-of-the-art benchmarks (including Spline and Cubic Interpolations, MICE, MissForest, matrix completion, and several RNN methods); typical improvements in Root Mean Squared Error are between 35%-50%. Additional experiments based on the same five datasets demonstrate that the improvements provided by our method are extremely robust.


Assuntos
Bases de Dados Factuais , Informática Médica/métodos , Redes Neurais de Computação , Algoritmos , Bases de Dados Factuais/normas , Bases de Dados Factuais/estatística & dados numéricos , Humanos , Sinais Vitais
3.
PLoS One ; 13(3): e0194985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590219

RESUMO

BACKGROUND: Risk prediction is crucial in many areas of medical practice, such as cardiac transplantation, but existing clinical risk-scoring methods have suboptimal performance. We develop a novel risk prediction algorithm and test its performance on the database of all patients who were registered for cardiac transplantation in the United States during 1985-2015. METHODS AND FINDINGS: We develop a new, interpretable, methodology (ToPs: Trees of Predictors) built on the principle that specific predictive (survival) models should be used for specific clusters within the patient population. ToPs discovers these specific clusters and the specific predictive model that performs best for each cluster. In comparison with existing clinical risk scoring methods and state-of-the-art machine learning methods, our method provides significant improvements in survival predictions, both post- and pre-cardiac transplantation. For instance: in terms of 3-month survival post-transplantation, our method achieves AUC of 0.660; the best clinical risk scoring method (RSS) achieves 0.587. In terms of 3-year survival/mortality predictions post-transplantation (in comparison to RSS), holding specificity at 80.0%, our algorithm correctly predicts survival for 2,442 (14.0%) more patients (of 17,441 who actually survived); holding sensitivity at 80.0%, our algorithm correctly predicts mortality for 694 (13.0%) more patients (of 5,339 who did not survive). ToPs achieves similar improvements for other time horizons and for predictions pre-transplantation. ToPs discovers the most relevant features (covariates), uses available features to best advantage, and can adapt to changes in clinical practice. CONCLUSIONS: We show that, in comparison with existing clinical risk-scoring methods and other machine learning methods, ToPs significantly improves survival predictions both post- and pre-cardiac transplantation. ToPs provides a more accurate, personalized approach to survival prediction that can benefit patients, clinicians, and policymakers in making clinical decisions and setting clinical policy. Because survival prediction is widely used in clinical decision-making across diseases and clinical specialties, the implications of our methods are far-reaching.


Assuntos
Algoritmos , Bases de Dados Factuais , Sistemas de Apoio a Decisões Clínicas , Transplante de Coração/mortalidade , Medicina de Precisão , Adolescente , Adulto , Idoso , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Taxa de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...