Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 4(4): 040901, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29057286

RESUMO

Edge illumination (EI) is an x-ray phase-contrast imaging technique, exploiting sensitivity to x-ray refraction to visualize features, which are often not detected by conventional absorption-based radiography. The method does not require a high degree of spatial coherence and is achromatic and, therefore, can be implemented with both synchrotron radiation and commercial x-ray tubes. Using different retrieval algorithms, information about an object's attenuation, refraction, and scattering properties can be obtained. In recent years, a theoretical framework has been developed that enables EI computed tomography (CT) and, hence, three-dimensional imaging. This review provides a summary of these advances, covering the development of different image acquisition schemes, retrieval approaches, and applications. These developments constitute an integral part in the transformation of EI CT into a widely spread imaging tool for use in a range of fields.

2.
Opt Express ; 25(10): 11984-11996, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788753

RESUMO

In this paper we present a single-image phase retrieval algorithm for multi-material samples, developed for the edge illumination (EI) X-ray phase contrast imaging method. The theoretical derivation is provided, along with any assumptions made. The algorithm is evaluated quantitatively using both simulated and experimental results from a computed tomography (CT) scan using the EI laboratory implementation. Qualitative CT results are provided for a biological sample containing both bone and soft-tissue. Using a single EI image per projection and knowledge of the complex refractive index, the algorithm can accurately retrieve the interface between a given pair of materials. A composite CT slice can be created by splicing together multiple CT reconstructions, each retrieved for a different pair of materials.

3.
Sci Rep ; 6: 31197, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502296

RESUMO

Edge illumination x-ray phase contrast tomography is a recently developed imaging technique which enables three-dimensional visualisation of low-absorbing materials. Dedicated phase retrieval algorithms can provide separate computed tomography (CT) maps of sample absorption, refraction and scattering properties. In this paper we propose a novel "modified local retrieval" method which is capable of accurately retrieving sample properties in a range of realistic, non-ideal imaging environments. These include system misalignment, defects in the used optical elements and system geometry variations over time due to vibrations or temperature fluctuations. System instabilities were analysed, modelled and incorporated into a simulation study. As a result, an additional modification was introduced to the retrieval procedure to account for changes in the imaging system over time, as well as local variations over the field of view. The performance of the proposed method was evaluated in comparison to a previously used "global retrieval" method by applying both approaches to experimental CT data of a rat's heart acquired in a non-ideal environment. The use of the proposed method resulted in the removal of major artefacts, leading to a significant improvement in image quality. This method will therefore enable acquiring high-resolution, reliable CT data of large samples in realistic settings.

4.
Br J Radiol ; 89(1058): 20150565, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26612467

RESUMO

OBJECTIVE: To demonstrate the feasibility of using X-ray phase-contrast tomography to assess internal organs in a post-mortem piglet model, as a possible non-invasive imaging autopsy technique. METHODS: Tomographic images of a new-born piglet were obtained using a free-space propagation X-ray phase-contrast imaging setup at a synchrotron (European Synchrotron Radiation Facility, Grenoble, France). A monochromatic X-ray beam (52 keV) was used in combination with a detector pixel size of 46 × 46 µm(2). A phase-retrieval algorithm was applied to all projections, which were then reconstructed into tomograms using the filtered-back projection algorithm. Images were assessed for diagnostic quality. RESULTS: Images obtained with the free-space propagation setup presented high soft-tissue contrast and sufficient resolution for resolving organ structure. All of the main body organs (heart, lungs, kidneys, liver and intestines) were easily identified and adequately visualized. In addition, grey/white matter differentiation in the cerebellum while still contained within the skull was shown. CONCLUSION: The feasibility of using X-ray phase-contrast tomography as a post-mortem imaging technique in an animal model has been demonstrated. Future studies will focus on translating this experiment to a laboratory-based setup. ADVANCES IN KNOWLEDGE: Appropriate image processing and analysis enable the simultaneous visualization of both soft- and hard-tissue structures in X-ray phase-contrast images of a complex, thick sample.


Assuntos
Autopsia/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Animais Recém-Nascidos , Estudos de Viabilidade , Interpretação de Imagem Radiográfica Assistida por Computador , Suínos , Tomografia Computadorizada por Raios X/instrumentação
5.
Sci Rep ; 5: 16318, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26541117

RESUMO

We present a development of the beam-tracking approach that allows its implementation in computed tomography. One absorbing mask placed before the sample and a high resolution detector are used to track variations in the beam intensity distribution caused by the sample. Absorption, refraction, and dark-field are retrieved through a multi-Gaussian interpolation of the beam. Standard filtered back projection is used to reconstruct three dimensional maps of the real and imaginary part of the refractive index, and of the dark-field signal. While the method is here demonstrated using synchrotron radiation, its low coherence requirements suggest a possible implementation with laboratory sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...