Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Case Rep Dermatol ; 15(1): 217-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023344

RESUMO

Green nail syndrome (GNS) is a persistent greenish pigmentation of the nail plate, originally described in 1944 by Goldman and Fox, due to Pseudomonas aeruginosa infection. Recently, pulmonary co-infection of P. aeruginosa and Achromobacter spp. has been described in patients with cystic fibrosis. Achromobacter xylosoxidans is a multidrug-resistant (MDR) pathogen involved in lung and soft tissue skin infections. Both Achromobacter xylosoxidans and P. aeruginosa are mainly found in humid environments or in water. There are no recognized co-infections due to P. aeruginosa and A. xylosoxidans in the skin and appendages. We describe two cases of GNS, the first due to P. aeruginosa associated with Achromobacter xylosoxidans; the other due to MDR P. aeruginosa, both successfully treated with topical ozenoxacin 1% cream daily for 12 weeks. The clinical management of GNS can be confusing, especially when the bacterial culture result is inconsistent or when non-Pseudomonas bacteria are isolated. In our case, due to the co-infection of P. aeruginosa and Achromobacter spp., local treatment with ozenoxacin - the first nonfluorinated quinolone - could be a safe and effective treatment in case of MDR nail infections. Further studies are required to evaluate clinical isolation from nail infections and the co-presence of P. aeruginosa and A. xylosoxidans.

2.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851567

RESUMO

Currently, the reference method for identifying the presence of variants of SARS-CoV-2 is whole genome sequencing. Although it is less expensive than in the past, it is still time-consuming, and interpreting the results is difficult, requiring staff with specific skills who are not always available in diagnostic laboratories. The test presented in this study aimed to detect, using traditional real-time PCR, the presence of the main variants described for the spike protein of the SARS-CoV-2 genome. The primers and probes were designed to detect the main deletions that characterize the different variants. The amplification targets were deletions in the S gene: 25-27, 69-70, 241-243, and 157-158. In the ORF1a gene, the deletion 3675-3677 was chosen. Some of these mutations can be considered specific variants, while others can be identified by the simultaneous presence of one or more deletions. We avoided using point mutations in order to improve the speed of the test. Our test can help clinical and medical microbiologists quickly recognize the presence of variants in biological samples (particularly nasopharyngeal swabs). The test can also be used to identify variants of the virus that could potentially be more diffusive as well as not responsive to the vaccine.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Primers do DNA , Difusão , Nasofaringe
3.
J Fungi (Basel) ; 8(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36294614

RESUMO

Candida albicans (C. albicans) is the most common fungal pathogen causing recurrent mucosal and life-threatening systemic infections. The ability to switch from yeast to hyphae and produce biofilm are the key virulence determinants of this fungus. In fact, Candida biofilms on medical devices represent the major risk factor for nosocomial bloodstream infections. Novel antifungal strategies are required given the severity of systemic candidiasis, especially in immunocompromised patients, and the lack of effective anti-biofilm treatments. Retinoids have gained attention recently due to their antifungal properties. MATERIAL AND METHODS: The present study aimed at evaluating the in vitro effects of different concentrations (300 to 18.75 µg/mL) of All-trans Retinoic Acid (ATRA), a vitamin A metabolite, on Candida growth and biofilm formation. RESULTS: ATRA completely inhibited the fungal growth, by acting as both fungicidal (at 300 µg/mL) and fungistatic (at 150 µg/mL) agent. Furthermore, ATRA was found to negatively affect Candida biofilm formation in terms of biomass, metabolic activity and morphology, in a dose-dependent manner, and intriguingly, its efficacy was as that of amphotericin B (AmB) (2-0.12 µg/mL). Additionally, transmission electron microscopy (TEM) analysis showed that at 300 µg/mL ATRA induced plasma membrane damage in Candida cells, confirming its direct toxic effect against the fungus. CONCLUSION: Altogether, the results suggest that ATRA has a potential for novel antifungal strategies aimed at preventing and controlling biofilm-associated Candida infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...