Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6356, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737528

RESUMO

In this work, a Figure-9 (F9) bismuth-doped fiber laser (BiDFL) operating in the dissipative soliton resonance (DSR) regime is presented. The 1338 nm laser used a BiDF as the active gain medium, while a nonlinear amplifying loop mirror (NALM) in an F9 configuration was employed to obtain high energy mode-locked pulses. The wave breaking-free rectangular pulse widened significantly in the time domain with the increase of the pump power while maintaining an almost constant peak power of 0.6 W. At the maximum pump power, the mode-locked laser delivered a rectangular-shaped pulse with a duration of 48 ns, repetition rate of 362 kHz and a radio-frequency signal-to-noise ratio of more than 60 dB. The maximum output power was recorded at around 11 mW with a corresponding pulse energy of 30 nJ. This is, to the best of the author's knowledge, the highest mode-locked pulse energy obtained at 1.3 µm as well as the demonstration of an NALM BiDFL in a F9 configuration.

2.
Opt Express ; 20(12): 13402-8, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714367

RESUMO

An all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity. A dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained by suppressing the two channels at the middle. Heterodyning these signals at the high-speed photodetector produces a millimeter wave carrier at 64.17 GHz. Temperature dependence characteristic of Brillouin frequency shift realize the flexibility of generated millimeter wave frequency to be tuned at 6.6 MHz/ °C.

3.
Opt Lett ; 35(9): 1461-3, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20436603

RESUMO

An all-optical generation of a microwave carrier at 21 GHz that incorporates a double-Brillouin frequency shifter is presented. The frequency shift of approximately 21 GHz is achieved by generating the second-order Brillouin Stokes signal from the Brillouin pump. This is accomplished through the circulation and isolation of its first-order Stokes signal in the optical fiber. The Brillouin pump signal is heterodyned with its second-order Brillouin Stokes signal at a high-speed photodetector, and the output beating frequency is equal to the offset between these two signals. The generated microwave carrier is measured at 21.3968 GHz, and the carrier phase noise as low as -58.67 dBc/Hz is achieved.

4.
Opt Express ; 17(19): 16904-10, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19770907

RESUMO

We report experimental results demonstrating the variation of optical signal-to-noise ratio (OSNR) of laser lines in Brillouin-Raman fiber laser against Raman pump power (RPP) variation. The reduction of OSNR is attributed to the spectral broadening of laser lines depending on the RPP. The spectral broadening is owing to the effect of the interaction between laser lines and turbulent waves (nonlinear interaction between longitudinal cavity modes). In our experiment, the worst OSNR is obtained at 650 mW RPP as a result of maximum spectral broadening when the Brillouin pump wavelength is fixed at 1555 nm. On the other hand, the OSNR improvement is obtained for RPP beyond 650 mW due to the effect of red-shift, the Raman peak gain is shifted away from the laser lines generated around 1555 nm thus reduces the spectral broadening effect.

5.
Appl Opt ; 48(12): 2340-3, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19381186

RESUMO

We demonstrate an opto-optical gain-clamped L-band erbium-doped fiber amplifier by manipulating the C-band lasing wavelength as the control signal. The L-band gain-clamped value is achieved by tuning the control laser in the C-band wavelength range that propagates in the opposite direction to the L-band signal. Within the wavelength range of 1538 nm and 1560 nm, the L-band gain decreases linearly with the increment of the C-band lasing wavelength. The L-band gain dynamic range decreases with the increment of the cavity loss. By combining two different levels of cavity loss, the gain dynamic range of 10 dB from 11 dB to 21 dB is achieved with an average noise figure of less than 5.9 dB. The whole gain spectrum of the L-band can be used for multiple-channel amplification because the laser is created outside its signal band.

6.
Opt Express ; 16(21): 16475-80, 2008 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-18852754

RESUMO

We demonstrate an enhanced architecture of Brillouin-Erbium fiber laser utilizing the reverse-S-shaped fiber section as the coupling mechanism. The enhancement is made by locating a common section of Erbium-doped fiber next to the single-mode fiber to amplify the Brillouin pumps and the oscillating Stokes lines. The requirement of having two Erbium gain sections to enhance the multiple Brillouin Stokes lines generation is neglected by the proposed fiber laser structure. The mode competitions arise from the self-lasing cavity modes of the fiber laser are efficiently suppressed by the stronger pre-amplified Brillouin pump power before entering the single mode fiber section. The maximum output power of 20 mW is obtained from the proposed fiber laser with 10 laser lines that equally separated by 0.089 nm spacing.


Assuntos
Amplificadores Eletrônicos , Érbio , Lasers , Dispositivos Ópticos , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Fibras Ópticas
7.
Opt Express ; 15(6): 3000-5, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532538

RESUMO

We investigate the amplitude flatness of Rayleigh-assisted Brillouin-Raman comb laser in a linear cavity in which feedbacks are formed by high-reflectivity mirror. The optimization of Brillouin pump power and wavelength is very crucial in order to obtain a uniform power level between Stokes lines. The Brillouin pump must have a relatively large power and its wavelength must be located closer to the Raman peak gain region. The flat-amplitude bandwidth is also determined by the choice of Raman pump wavelengths. A flat-amplitude bandwidth of 30.7 nm from 1527.32 to 1558.02 nm is measured when Raman pump wavelengths are set to 1435 and 1450 nm. 357 uniform Brillouin Stokes lines with 0.086 nm spacing are generated across the wavelength range. The average signal-to-noise ratio of 17 dB is obtained for all the Brillouin Stokes lines.

8.
Opt Lett ; 31(7): 918-20, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16599211

RESUMO

We demonstrate a multiple-wavelength Brillouin comb laser with cooperative Rayleigh scattering that uses Raman amplification in dispersion-compensating fiber. The laser resonator is a linear cavity formed by reflector at each end of the dispersion-compensating fiber to improve the reflectivity of the Brillouin Stokes comb. Multiple Brillouin Stokes generation has been improved in terms of optical signal-to-noise ratio and power-level fluctuation between neighboring channels. Furthermore, the linewidth of the Brillouin Stokes is uniform within the laser output bandwidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...