Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chem Biol Interact ; 396: 111047, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735454

RESUMO

Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Calcogênios , Cisplatino , Neoplasias Pulmonares , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Calcogênios/química , Calcogênios/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Células A549 , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632299

RESUMO

The PI3K class I is composed of four PI3K isoforms that serve as regulatory enzymes governing cellular metabolism, proliferation, and survival. The hyperactivation of PI3Kα is observed in various types of cancer and is linked to poor prognosis. Unfortunately, the development inhibitors selectively targeting one of the isoforms remains challenging, with only few agents in clinical use. The main difficulty arises from the high conservation among residues at the ATP-binding pocket across isoforms, which also serves as target pocket for inhibitors. In this work, molecular dynamics and quantum calculations were performed to investigate the molecular features guiding the binding of selective inhibitors, alpelisib and GDC-0326, into the ATP-binding pocket of PI3Kα. While molecular dynamics allowed crystallographic coordinates to relax, the interaction eergy between each amino acid residues and inhibitors was obtained by combining the Molecular Fractionation with Conjugated Caps scheme with Density Functional Theory calculations. In addition, the atomic charge of ligands in the bound and unbound (free) was calculated. Results indicated that the most relevant residues for the binding of alpelisib are Ile932, Glu859, Val851, Val850, Tyr836, Met922, Ile800, and Ile848, while the most important residues for the binding of GDC-0326 are Ile848, Ile800, Ile932, Gln859, Glu849, and Met922. In addition, residues Trp780, Ile800, Tyr836, Ile848, Gln859 Val850, Val851, Ile932 and Met922 are common hotspots for both inhibitors. Overall, the results from this work contribute to improving the understanding of the molecular mechanisms controlling selectivity and highlight important interactions to be considered during the rational design of new agents.Communicated by Ramaswamy H. Sarma.

3.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37418278

RESUMO

Proteins are dynamic macromolecules that perform vital functions in cells. A protein structure determines its function, but this structure is not static, as proteins change their conformation to achieve various functions. Understanding the conformational landscapes of proteins is essential to understand their mechanism of action. Sets of carefully chosen conformations can summarize such complex landscapes and provide better insights into protein function than single conformations. We refer to these sets as representative conformational ensembles. Recent advances in computational methods have led to an increase in the number of available structural datasets spanning conformational landscapes. However, extracting representative conformational ensembles from such datasets is not an easy task and many methods have been developed to tackle it. Our new approach, EnGens (short for ensemble generation), collects these methods into a unified framework for generating and analyzing representative protein conformational ensembles. In this work, we: (1) provide an overview of existing methods and tools for representative protein structural ensemble generation and analysis; (2) unify existing approaches in an open-source Python package, and a portable Docker image, providing interactive visualizations within a Jupyter Notebook pipeline; (3) test our pipeline on a few canonical examples from the literature. Representative ensembles produced by EnGens can be used for many downstream tasks such as protein-ligand ensemble docking, Markov state modeling of protein dynamics and analysis of the effect of single-point mutations.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química
4.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163076

RESUMO

Proteins are dynamic macromolecules that perform vital functions in cells. A protein structure determines its function, but this structure is not static, as proteins change their conformation to achieve various functions. Understanding the conformational landscapes of proteins is essential to understand their mechanism of action. Sets of carefully chosen conformations can summarize such complex landscapes and provide better insights into protein function than single conformations. We refer to these sets as representative conformational ensembles. Recent advances in computational methods have led to an increase in number of available structural datasets spanning conformational landscapes. However, extracting representative conformational ensembles from such datasets is not an easy task and many methods have been developed to tackle it. Our new approach, EnGens (short for ensemble generation), collects these methods into a unified framework for generating and analyzing protein conformational ensembles. In this work we: (1) provide an overview of existing methods and tools for protein structural ensemble generation and analysis; (2) unify existing approaches in an open-source Python package, and a portable Docker image, providing interactive visualizations within a Jupyter Notebook pipeline; (3) test our pipeline on a few canonical examples found in the literature. Representative ensembles produced by EnGens can be used for many downstream tasks such as protein-ligand ensemble docking, Markov state modeling of protein dynamics and analysis of the effect of single-point mutations.

5.
J Biomol Struct Dyn ; 41(3): 1085-1097, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913837

RESUMO

The PI3K/Akt/mTOR signaling pathway plays a pivotal role in cellular metabolism, growth and survival. PI3Kα hyperactivation impairs downstream signaling, including mTOR regulation, and are linked to poor prognosis and refractory cancer treatment. To support multi-target drug discovery, we took advantage from existing PI3Kα and mTOR crystallographic structures to map similarities and differences in their ATP-binding pockets in the presence of selective or dual inhibitors. Molecular dynamics and MM/PBSA calculations were employed to study the binding profile and identify the relative contribution of binding site residues. Our analysis showed that while varying parameters of solute and solvent dielectric constant interfered in the absolute binding free energy, it had no effect in the relative per residue contribution. In all complexes, the most important interactions were observed within 3-3.5 Å from inhibitors, responding for ∼75-100% of the total calculated interaction energy. While closest residues are essential for the strength of the binding of all ligands, more distant residues seem to have a larger impact on the binding of the dual inhibitor, as observed for PI3Kα residues Phe934, Lys802 and Asp805 and, mTOR residues Leu2192, Phe2358, Leu2354, Lys2187 and Tyr2225. A detailed description of individual residue contribution in the presence of selective or dual inhibitors is provided as an effort to improve the understanding of molecular mechanisms controlling multi-target inhibition. This work provides key information to support further studies seeking the rational design of potent PI3K/mTOR dual inhibitors for cancer treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Fosfatidilinositol 3-Quinases , Serina-Treonina Quinases TOR , Inibidores de Fosfoinositídeo-3 Quinase , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/química , Sítios de Ligação , Trifosfato de Adenosina/metabolismo
6.
Front Pharmacol ; 13: 952250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091760

RESUMO

Chronic myeloid leukemia (CML) is caused by constitutively active fusion protein BCR-ABL1, and targeting ABL1 is a promising therapy option. Imatinib, dasatinib, and nilotinib have all been shown to work effectively in clinical trials. ABL1 mutations, particularly the T315I gate-keeper mutation, cause resistance in patients. As a result, broad-spectrum ABL1 medicines are desperately needed. In order to screen potential drugs targeting CML, mebendazole (MBZ) was subjected to the in vitro test against CML cell lines (K562 and FEPS) and computational assays. The antiproliferative effect of MBZ and the combination with tyrosine kinase inhibitors (TKIs) was tested using end-point viability assays, cell cycle distribution analysis, cell membrane, and mitochondrial dyes. By interrupting the cell cycle and causing cell death, MBZ and its combination with imatinib and dasatinib have a significant antiproliferative effect. We identified MBZ as a promising "new use" drug targeting wild-type and mutant ABL1 using molecular docking. Meanwhile, we determined which residues in the allosteric site are important in ABL1 drug development. These findings may not only serve as a model for repositioning current authorized medications but may also provide ABL1-targeted anti-CML treatments a fresh lease of life.

7.
Comput Biol Med ; 139: 104943, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34717233

RESUMO

An unprecedented research effort has been undertaken in response to the ongoing COVID-19 pandemic. This has included the determination of hundreds of crystallographic structures of SARS-CoV-2 proteins, and numerous virtual screening projects searching large compound libraries for potential drug inhibitors. Unfortunately, these initiatives have had very limited success in producing effective inhibitors against SARS-CoV-2 proteins. A reason might be an often overlooked factor in these computational efforts: receptor flexibility. To address this issue we have implemented a computational tool for ensemble docking with SARS-CoV-2 proteins. We have extracted representative ensembles of protein conformations from the Protein Data Bank and from in silico molecular dynamics simulations. Twelve pre-computed ensembles of SARS-CoV-2 protein conformations have now been made available for ensemble docking via a user-friendly webserver called DINC-COVID (dinc-covid.kavrakilab.org). We have validated DINC-COVID using data on tested inhibitors of two SARS-CoV-2 proteins, obtaining good correlations between docking-derived binding energies and experimentally-determined binding affinities. Some of the best results have been obtained on a dataset of large ligands resolved via room temperature crystallography, and therefore capturing alternative receptor conformations. In addition, we have shown that the ensembles available in DINC-COVID capture different ranges of receptor flexibility, and that this diversity is useful in finding alternative binding modes of ligands. Overall, our work highlights the importance of accounting for receptor flexibility in docking studies, and provides a platform for the identification of new inhibitors against SARS-CoV-2 proteins.

8.
J Neurochem ; 158(2): 262-281, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837559

RESUMO

Tissue accumulation and high urinary excretion of ethylmalonic acid (EMA) are found in ethylmalonic encephalopathy (EE), an inherited disorder associated with cerebral and cerebellar atrophy whose pathogenesis is poorly established. The in vitro and in vivo effects of EMA on bioenergetics and redox homeostasis were investigated in rat cerebellum. For the in vitro studies, cerebellum preparations were exposed to EMA, whereas intracerebellar injection of EMA was used for the in vivo evaluation. EMA reduced state 3 and uncoupled respiration in vitro in succinate-, glutamate-, and malate-supported mitochondria, whereas decreased state 4 respiration was observed using glutamate and malate. Furthermore, mitochondria permeabilization and succinate supplementation diminished the decrease in state 3 with succinate. EMA also inhibited the activity of KGDH, an enzyme necessary for glutamate oxidation, in a mixed manner and augmented mitochondrial efflux of α-ketoglutarate. ATP levels were markedly reduced by EMA, reflecting a severe bioenergetic disruption. Docking simulations also indicated interactions between EMA and KGDH and a competition with glutamate and succinate for their mitochondrial transporters. In vitro findings also showed that EMA decreased mitochondrial membrane potential and Ca2+ retention capacity, and induced swelling in the presence of Ca2+ , which were prevented by cyclosporine A and ADP and ruthenium red, indicating mitochondrial permeability transition (MPT). Moreover, EMA, at high concentrations, mildly increased ROS levels and altered antioxidant defenses in vitro and in vivo. Our data indicate that EMA-induced impairment of glutamate and succinate oxidation and MPT may contribute to the pathogenesis of the cerebellum abnormalities in EE.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glutamatos/metabolismo , Malonatos/toxicidade , Poro de Transição de Permeabilidade Mitocondrial , Succinatos/metabolismo , Animais , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Succinatos/farmacologia
9.
bioRxiv ; 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33501448

RESUMO

MOTIVATION: Recent efforts to computationally identify inhibitors for SARS-CoV-2 proteins have largely ignored the issue of receptor flexibility. We have implemented a computational tool for ensemble docking with the SARS-CoV-2 proteins, including the main protease (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp). RESULTS: Ensembles of other SARS-CoV-2 proteins are being prepared and made available through a user-friendly docking interface. Plausible binding modes between conformations of a selected ensemble and an uploaded ligand are generated by DINC, our parallelized meta-docking tool. Binding modes are scored with three scoring functions, and account for the flexibility of both the ligand and receptor. Additional details on our methods are provided in the supplementary material. AVAILABILITY: dinc-covid.kavrakilab.org. SUPPLEMENTARY INFORMATION: Details on methods for ensemble generation and docking are provided as supplementary data online. CONTACT: geancarlo.zanatta@ufc.br , kavraki@rice.edu.

11.
Br J Nutr ; 123(10): 1117-1126, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32077406

RESUMO

The study of polyphenols' effects on health has been gaining attention lately. In addition to reacting with important enzymes, altering the cell metabolism, these substances can present either positive or negative metabolic alterations depending on their consumption levels. Naringenin, a citrus flavonoid, already presents diverse metabolic effects. The objective of this work was to evaluate the effect of maternal naringenin supplementation during pregnancy on the tricarboxylic acid cycle activity in offspring's cerebellum. Adult female Wistar rats were divided into two groups: (1) vehicle (1 ml/kg by oral administration (p.o.)) or (2) naringenin (50 mg/kg p.o.). The offspring were euthanised at 7th day of life, and the cerebellum was dissected to analyse citrate synthase, isocitrate dehydrogenase (IDH), α-ketoglutarate dehydrogenase (α-KGDH) and malate dehydrogenase (MDH) activities. Molecular docking used SwissDock web server and FORECASTER Suite, and the proposed binding pose image was created on UCSF Chimera. Data were analysed by Student's t test. Naringenin supplementation during pregnancy significantly inhibited IDH, α-KGDH and MDH activities in offspring's cerebellum. A similar reduction was observed in vitro, using purified α-KGDH and MDH, subjected to pre-incubation with naringenin. Docking simulations demonstrated that naringenin possibly interacts with dehydrogenases in the substrate and cofactor binding sites, inhibiting their function. Naringenin administration during pregnancy may affect cerebellar development and must be evaluated with caution by pregnant women and their physicians.


Assuntos
Cerebelo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Suplementos Nutricionais , Flavanonas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Animais , Citrato (si)-Sintase/efeitos dos fármacos , Feminino , Isocitrato Desidrogenase/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Simulação de Acoplamento Molecular , Gravidez , Ratos , Ratos Wistar
12.
Proc Natl Acad Sci U S A ; 116(52): 26549-26554, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822620

RESUMO

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA. Thermal melt synchrotron radiation circular dichroism spectroscopic binding studies of the full-length NavMs channel (which includes both pore and voltage sensor domains), and a pore-only construct, undertaken in the presence and absence of VPA, indicated that the drug binds to and destabilizes the channel, but not the pore-only construct. This is in contrast to other antiepileptic compounds that have previously been shown to bind in the central hydrophobic core of the pore region of the channel, and that tend to increase the thermal stability of both pore-only constructs and full-length channels. Molecular docking studies also indicated that the VPA binding site is associated with the voltage sensor, rather than the hydrophobic cavity of the pore domain. Electrophysiological studies show that VPA influences the block and inactivation rates of the NavMs channel, although with lower efficacy than classical channel-blocking compounds. It thus appears that, while VPA is capable of binding to these voltage-gated sodium channels, it has a very different mode and site of action than other anticonvulsant compounds.

13.
Phys Chem Chem Phys ; 20(35): 22818-22830, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30151512

RESUMO

Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis. In this work, crystallographic data of uPA complexed with distinct ligands (PDB id: 1SQA, 1SQO, and 1FV9) were used to perform quantum biochemistry calculations based on the framework of density functional theory (DFT) and within the molecular fractionation with conjugated caps (MFCC) scheme. Our calculations revealed a total energy interaction of -107.30, -99.5, and -35.30 kcal mol-1 for two naphthamidine-based compounds (Ul1 and UI2) and 2-amino-5-hydroxybenzimidazole (172), respectively, which are in good agreement with known inhibitory experiments. Residues Asp189, Ser190, Cys191-Cys220, Gln192, Trp 215, Gly216, and Gly219 were identified as the main interacting amino acid residues with interaction energy contributions lower than -4.0 kcal mol-1 for uPA/UI1 and UPA/UI2 complexes. In the case of compound 172, our calculations have shown that the most important interactions occur with residues Asp189, Cys191-Cys220, and Ser190. Our results highlight the relevance of the protonation state of ligands and residues and that the naphthamidine scaffold of UI1 and UI2 is the main determinant of their potency, followed by their aminopyrimidine substitution. Altogether, the results of this work contribute to the understanding of the uPA binding mechanisms of the inhibitory compounds Ul1 and 172, stimulating the use of quantum biochemistry theoretical approaches for the development of new uPA inhibitors as new medicines for cancer treatment.


Assuntos
Benzimidazóis/química , Naftalenos/química , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/química , Humanos , Modelos Moleculares , Ligação Proteica , Teoria Quântica
14.
Neurotox Res ; 31(4): 545-559, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28155214

RESUMO

Research on Parkinson's disease (PD) and drug development is hampered by the lack of suitable human in vitro models that simply and accurately recreate the disease conditions. To counteract this, many attempts to differentiate cell lines, such as the human SH-SY5Y neuroblastoma, into dopaminergic neurons have been undertaken since they are easier to cultivate when compared with other cellular models. Here, we characterized neuronal features discriminating undifferentiated and retinoic acid (RA)-differentiated SH-SYSY cells and described significant differences between these cell models in 6-hydroxydopamine (6-OHDA) cytotoxicity. In contrast to undifferentiated cells, RA-differentiated SH-SY5Y cells demonstrated low proliferative rate and a pronounced neuronal morphology with high expression of genes related to synapse vesicle cycle, dopamine synthesis/degradation, and of dopamine transporter (DAT). Significant differences between undifferentiated and RA-differentiated SH-SY5Y cells in the overall capacity of antioxidant defenses were found; although RA-differentiated SH-SY5Y cells presented a higher basal antioxidant capacity with high resistance against H2O2 insult, they were twofold more sensitive to 6-OHDA. DAT inhibition by 3α-bis-4-fluorophenyl-methoxytropane and dithiothreitol (a cell-permeable thiol-reducing agent) protected RA-differentiated, but not undifferentiated, SH-SY5Y cells from oxidative damage and cell death caused by 6-OHDA. Here, we demonstrate that undifferentiated and RA-differentiated SH-SY5Y cells are two unique phenotypes and also have dissimilar mechanisms in 6-OHDA cytotoxicity. Hence, our data support the use of RA-differentiated SH-SY5Y cells as an in vitro model of PD. This study may impact our understanding of the pathological mechanisms of PD and the development of new therapies and drugs for the management of the disease.


Assuntos
Antioxidantes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Neurônios Dopaminérgicos/fisiologia , Tretinoína/farmacologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Ditiotreitol/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Peróxido de Hidrogênio , Oxirredução/efeitos dos fármacos , Oxidopamina/antagonistas & inibidores , Fosfinas/farmacologia
15.
ACS Chem Neurosci ; 7(10): 1331-1347, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27434874

RESUMO

Risperidone is an atypical antipsychotic used in the treatment of schizophrenia and of symptoms of irritability associated with autism spectrum disorder (ASD). Its main action mechanism is the blockade of D2-like receptors acting over positive and negative symptoms of schizophrenia with small risk of extrapyramidal symptoms (EPS) at doses corresponding to low/moderate D2 occupancy. Such a decrease in the side effect incidence can be associated with its fast unbinding from D2 receptors in the nigrostriatal region allowing the recovery of dopamine signaling pathways. We performed docking essays using risperidone and the D3 receptor crystallographic data and results suggested two possible distinct orientations for risperidone at the binding pocket. Orientation 1 is more close to the opening of the binding site and has the 6-fluoro-1,2 benzoxazole fragment toward the bottom of the D3 receptor cleft, while orientation 2 is deeper inside the binding pocket with the same fragment toward to the receptor surface. In order to unveil the implications of these two binding orientations, classical molecular dynamics and quantum biochemistry computations within the density functional theory formalism and the molecular fractionation with conjugate caps framework were performed. Quantum mechanics/molecular mechanics suggests that orientation 2 (considering the contribution of Glu90) is slightly more energetically stable than orientation 1 with the main contribution coming from residue Asp110. The residue Glu90, positioned at the opening of the binding site, is closer to orientation 1 than 2, suggesting that it may have a key role in stability through attractive interaction with risperidone. Therefore, although orientations 1 and 2 are both likely to occur, we suggest that the occurrence of the first may contribute to the reduction of side effects in patients taking risperidone due to the reduction of dopamine receptor occupancy in the nigrostriatal region through a mechanism of fast dissociation. The atypical effect may be obtained simply by either delaying D3R full blockage by spatial hindrance of orientation 1 at the binding site or through an effective blockade followed by orientation 1 fast dissociation. While the molecular interpretation suggested in this work shed some light on the potential molecular mechanisms accounting for the reduced extrapyramidal symptoms observed during risperidone treatment, further studies are necessary in order to evaluate the implications of both orientations during the receptor activation/inhibition. Altogether these data highlight important hot spots in the dopamine receptor binding site bringing relevant information for the development of novel/derivative agents with atypical profile.


Assuntos
Antipsicóticos/farmacologia , Antagonistas de Dopamina/farmacologia , Receptores de Dopamina D3/metabolismo , Risperidona/farmacologia , Sequência de Aminoácidos , Antipsicóticos/química , Sítios de Ligação , Antagonistas de Dopamina/química , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Teoria Quântica , Receptores de Dopamina D3/química , Receptores de Dopamina D3/genética , Risperidona/química , Eletricidade Estática
16.
Bioelectrochemistry ; 108: 46-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26720841

RESUMO

The inhibition of laccase enzymatic catalytic activity by formetanate hydrochloride (FMT) was investigated by cyclic voltammetry and by quantum chemical calculations based on density functional theory with a protein fragmentation approach. The cyclic voltammograms were obtained using a biosensor prepared by enzyme immobilization on gold electrodes modified with gold nanoparticles and 4-aminophenol as the target molecule. The decrease in the peak current in the presence of FMT was used to characterize the inhibition process. The calculations identified Asp206 as the most relevant moiety in the interaction of FMT with the laccase enzymatic ligand binding domain. The amino acid residue Cys453 was important, because the Cys453-FMT interaction energy was not affected by the dielectric constant, although it was not a very close residue. This study provides an overview of how FMT inhibits laccase catalytic activity.


Assuntos
Carbamatos/farmacologia , Poluentes Ambientais/farmacologia , Inibidores Enzimáticos/farmacologia , Lacase/antagonistas & inibidores , Modelos Moleculares , Praguicidas/farmacologia , Teoria Quântica , Biocatálise , Carbamatos/química , Carbamatos/metabolismo , Relação Dose-Resposta a Droga , Condutividade Elétrica , Eletroquímica , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ouro/química , Lacase/química , Lacase/metabolismo , Praguicidas/química , Praguicidas/metabolismo , Conformação Proteica , Eletricidade Estática , Trametes/enzimologia
17.
Ann Gen Psychiatry ; 13(1): 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426159

RESUMO

Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer's disease, schizophrenia, sleep disorders, drug dependence, and Parkinson's disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans.

18.
Neurosci Lett ; 583: 176-81, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25263788

RESUMO

Autism spectrum disorders (ASD) involve a complex interplay of both genetic and environmental risk factors, such as prenatal exposure to valproic acid (VPA). Considering the neuroprotective, antioxidant and anti-inflammatory effects of resveratrol (RSV), we investigated the influence of prenatal RSV treatment on social behaviors of a rodent model of autism induced by prenatal exposure to VPA. In the three-chambered apparatus test, the VPA group showed a reduced place preference conditioned by conspecific and no preference between exploring a wire-cage or a rat enclosed inside a wire cage, revealing sociability impairments. Prenatal administration of RSV prevented the VPA-induced social impairments evaluated in this study. A bioinformatics analysis was used to discard possible molecular interactions between VPA and RSV during administration. The interaction energy between RSV and VPA is weak and highly unstable, suggesting cellular effects instead of a single chemical process. In summary, the present study highlights a promising experimental strategy to evaluate new molecular targets possibly involved in the etiology of autism and developmental alterations implicated in neural and behavioral impairments in ASD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Transtorno Autístico/tratamento farmacológico , Estilbenos/uso terapêutico , Ácido Valproico/efeitos adversos , Animais , Transtorno Autístico/psicologia , Feminino , Masculino , Exposição Materna , Simulação de Dinâmica Molecular , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/psicologia , Ratos Wistar , Resveratrol , Habilidades Sociais
19.
ACS Chem Neurosci ; 5(10): 1041-54, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25181639

RESUMO

As the dopamine D3R receptor is a promising target for schizophrenia treatment, an improved understanding of the binding of existing antipsychotics to this receptor is crucial for the development of new potent and more selective therapeutic agents. In this work, we have used X-ray cocrystallization data of the antagonist eticlopride bound to D3R as a template to predict, through docking essays, the placement of the typical antipsychotic drug haloperidol at the D3R receptor binding site. Afterward, classical and quantum mechanics/molecular mechanics (QM/MM) computations were employed to improve the quality of the docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. After docking, the calculated QM improved total interaction energy EQMDI = -170.1 kcal/mol was larger (in absolute value) than that obtained with classical molecular mechanics improved (ECLDI = -156.3 kcal/mol) and crude docking (ECRDI = -137.6 kcal/mol) procedures. The QM/MM computations reveal the pivotal role of the Asp110 amino acid residue in the D3R haloperidol binding, followed by Tyr365, Phe345, Ile183, Phe346, Tyr373, and Cys114. Besides, it highlights the relevance of the haloperidol hydroxyl group axial orientation, which interacts with the Tyr365 and Thr369 residues, enhancing its binding to dopamine receptors. Finally, our computations indicate that functional substitutions in the 4-clorophenyl and in the 4-hydroxypiperidin-1-yl fragments (such as C3H and C12H hydrogen replacement by OH or COOH) can lead to haloperidol derivatives with distinct dopamine antagonism profiles. The results of our work are a first step using in silico quantum biochemical design as means to impact the discovery of new medicines to treat schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Haloperidol/farmacologia , Receptores de Dopamina D3/antagonistas & inibidores , Receptores de Dopamina D3/metabolismo , Antagonistas de Dopamina/farmacologia , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Teoria Quântica , Receptores de Dopamina D3/genética , Salicilamidas/farmacologia , Esquizofrenia/tratamento farmacológico , Eletricidade Estática
20.
J Biomed Nanotechnol ; 8(2): 211-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22515072

RESUMO

Tissue engineering is a potential approach to regenerate damaged tissue by the combination and synergism among the scaffolding material, cell source and signaling factors. In the present study, mesenchymal stem cells (MSCs) were isolated from C57BL/6 mice, cultured on poly(D, L-lactide-co-glycolide) (PLGA) scaffold produced by electrospinning technique and differentiated into chondrogenic lineage. After seeding, MSCs were responsive and became flattened with fibroblast-like morphology demonstrated by the presence of actin stress fibers. Integrin-beta1 receptor blockage reduced significantly cell adhesion with loss of actin stress fibers, demonstrating the ability of PLGA nanofiber to trigger integrin receptor-mediated cell adhesion. Present data contribute to the understanding of MSCs' behavior on these biodegradable and biocompatible scaffolds that can be used as carriers in treatments involving cell transplantation.


Assuntos
Adesão Celular/fisiologia , Integrina beta1/metabolismo , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Ácido Poliglicólico/química , Animais , Antígenos CD/metabolismo , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Citometria de Fluxo , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...