Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Omega ; 9(21): 22777-22793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826533

RESUMO

Malaria, caused by Plasmodium protozoa with Plasmodium falciparum as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of P. falciparum (PfENR) as a promising target for antimalarial drug discovery. Through a comprehensive analysis, we conducted a comparative evaluation of two lead compounds, LD1 (CID: 44405336, lead compounds 1) and LD2 (CID: 72703246, lead compounds 2), obtained from the PubChem/NCBI ligand database, to serve as reference molecules in the identification of potential derivatives using virtual screening assays. Among the newly identified candidates, Ligand 1 (LG1) and Ligand 2 (LG2) exhibited intriguing characteristics and underwent further investigation through docking and molecular dynamics simulations. Ligand 1 (LG1) demonstrated interactions similar to LD1, including hydrogen bonding with Asp218, while Ligand 2 (LG2) displayed superior binding energy comparable to LD1 and LD2, despite lacking hydrogen bonding interactions observed in the control compounds triclosan and its derivative 7-(4-chloro-2-hydroxyphenoxy)-4-methyl-2H-chromen-2-one (CHJ). Following computational validation using the MM/GBSA method to estimate binding free energy, commercially acquired LG1 and LG2 ligands were subjected to in vitro testing. Inhibition assays were performed to evaluate their potential as PfENR inhibitors alongside triclosan as a control compound. LG1 exhibited no inhibitory effects, while LG2 demonstrated inhibitory effects like triclosan. In conclusion, this study contributes valuable insights into developing novel antimalarial drugs by identifying LG2 as a potential ligand and employing a comprehensive approach integrating computational and experimental methodologies.

2.
An Acad Bras Cienc ; 96(2): e20231336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747801

RESUMO

The disease coronavirus COVID-19 has been the cause of millions of deaths worldwide. Among the proteins of SARS-CoV-2, non-structural protein 12 (NSP12) plays a key role during COVID infection and is part of the RNA-dependent RNA polymerase complex. The monitoring of NSP12 polymorphisms is extremely important for the design of new antiviral drugs and monitoring of viral evolution. This study analyzed the NSP12 mutations detected in circulating SARS-CoV-2 during the years 2020 to 2022 in the population of the city of Manaus, Amazonas, Brazil. The most frequent mutations found were P323L and G671S. Reports in the literature indicate that these mutations are related to transmissibility efficiency, which may have contributed to the extremely high numbers of cases in this location. In addition, two mutations described here (E796D and R914K) are close and have RMSD that is similar to the mutations M794V and N911K, which have been described in the literature as influential on the performance of the NSP12 enzyme. These data demonstrate the need to monitor the emergence of new mutations in NSP12 in order to better understand their consequences for the treatments currently used and in the design of new drugs.


Assuntos
COVID-19 , RNA-Polimerase RNA-Dependente de Coronavírus , SARS-CoV-2 , Humanos , Brasil , Simulação por Computador , COVID-19/virologia , COVID-19/transmissão , Mutação/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo
3.
An Acad Bras Cienc ; 96(suppl 1): e20230382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422345

RESUMO

Plasmodium falciparum is known to cause severe malaria, current treatment consists in artemisinin-based combination therapy, but resistance can lead to treatment failure. Knowledge concerning P. falciparum essential proteins can be used for searching new antimalarials, among these a potential candidate is shikimate dehydrogenase (SDH), an enzyme part of the shikimate pathway which is responsible for producing endogenous aromatic amino acids. SDH from P. falciparum (PfSDH) is unexplored by the scientific community, therefore, this study aims to establish the first protocol for active PfSDH expression. Putative PfSDH nucleotide sequence was used to construct an optimized expression vector pET28a+PfSDH inserted in E. coli BL21(DE3). As a result, optimal expression conditions were acquired by varying IPTG and temperature through time. Western Blot analysis was applied to verify appropriate PfSDH expression, solubilization and purification started with lysis followed by two-steps IMAC purification. Enzyme activity was measured spectrophotometrically by NADPH oxidation, optimal PfSDH expression occur at 0.1 mM IPTG for 48 hours growing at 37 °C and shaking at 200 rpm, recombinant PfSDH obtained after purification was soluble, pure and its physiological catalysis was confirmed. Thus, this study describes the first protocol for heterologous expression of PfSDH in soluble and active form.


Assuntos
Oxirredutases do Álcool , Escherichia coli , Plasmodium falciparum , Plasmodium falciparum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Isopropiltiogalactosídeo/metabolismo
4.
Biomed Res Int ; 2022: 2748962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909472

RESUMO

In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.


Assuntos
Bothrops , Venenos de Crotalídeos , Anticorpos de Domínio Único , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Bothrops/metabolismo , Metaloproteases/metabolismo , Simulação de Acoplamento Molecular , Testes de Neutralização , Anticorpos de Domínio Único/farmacologia , Mordeduras de Serpentes/tratamento farmacológico
5.
Toxicon ; 217: 96-106, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977615

RESUMO

OBJECTIVE: To investigate the in vitro activity, synergism, cytotoxicity and cellular immunological response, as well as the molecular affinity between amphotericin B (AmB) and crotamine (CTA), derived from Crotalus durissus terrificus venom against Leishmania amazonensis. METHODS: This study performed the inhibition of promastigotes and amastigotes' growth under different concentrations of the drug and pharmacological combinations (AmB + CTA) based on the Berimbaum method (synergism study). The lactate dehydrogenase (LDH) quantification method was used to determine the cytotoxicity of the drug and combinations employing four cell lines (J774, HepG2, VERO, and C2C12). Following, the levels of Tumour Necrose Factor-alpha (TNF-α) and Interleukin-12 (IL-12) cytokines, using enzyme-linked immunosorbent assay (ELISA) and nitrites, as an indirect measure of Nitric Oxide (NO), using the Griess reaction were assessed in the supernatants of infected macrophages. In silico approach (molecular docking and dynamics) and binding affinity (surface plasmon resonance) between the drug and toxin were also investigated. RESULTS: CTA enhanced AmB effect against promastigote and amastigote forms of L. amazonensis, decreased the drug toxicity in different cell lines and induced the production of important Th1-like cytokines and NO by infected macrophages. The pharmacological combination also displayed consistent molecular interactions with low energy of coupling and a concentration-dependent profile. CONCLUSION: Our data suggest that this pharmacological approach is a promising alternative treatment against L. amazonensis infection due to the improved activity (synergistic effect) achieved against the parasites' forms and to the decreased cytotoxic effect.


Assuntos
Antiprotozoários , Venenos de Crotalídeos , Anfotericina B/metabolismo , Anfotericina B/toxicidade , Animais , Antiprotozoários/farmacologia , Venenos de Crotalídeos/química , Crotalus/metabolismo , Citocinas/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo
6.
Parasitol Res ; 120(6): 2199-2218, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33963899

RESUMO

Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 µM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 µM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 µM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.


Assuntos
Amidas/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Piperidonas/farmacologia , Tripanossomicidas/farmacologia , Amidas/química , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Simulação por Computador , Humanos , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , Piperidonas/química , Células Vero
7.
Toxicon X ; 7: 100049, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32613196

RESUMO

A bioactive compound isolated from the stem extract of Aristolochia sprucei through High Performance Liquid Chromatography (HPLC) was identified via Nuclear Magnetic Resonance (NMR) as the aristolochic acid (AA). This compound showed an inhibitory effect over the myotoxic activity of Bothrops jararacussu and Bothrops asper venoms, being also effective against the indirect hemolytic activity of B. asper venom. Besides, AA also inhibited the myotoxic activity of BthTX-I and MTX-II with an efficiency greater than 60% against both myotoxins. Docking predictions revealed an interesting mechanism, through which the AA displays an interaction profile consistent with its inhibiting abilities, binding to both active and putative sites of svPLA2. Overall, the present findings indicate that AA may bind to critical regions of myotoxic Asp 49 and Lys49-PLA2s from snake venoms, highlighting the relevance of domains comprising the active and putative sites to inhibit these toxins.

8.
Toxins (Basel) ; 10(4)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596324

RESUMO

Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.


Assuntos
Camelídeos Americanos/imunologia , Crotoxina/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Crotoxina/toxicidade , Escherichia coli/genética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/uso terapêutico , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/terapia
9.
Int J Biol Macromol ; 107(Pt A): 1014-1022, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28951306

RESUMO

Phospholipases A2 (PLA2s) are important enzymes present in snake venoms and are related to a wide spectrum of pharmacological effects, however the toxic potential and therapeutic effects of acidic isoforms have not been fully explored and understood. Due to this, the present study describes the isolation and biochemical characterization of two new acidic Asp49-PLA2s from Bothrops brazili snake venom, named Braziliase-I and Braziliase-II. The venom was fractionated in three chromatographic steps: ion exchange, hydrophobic interaction and reversed phase. The isoelectric point (pI) of the isolated PLA2s was determined by two-dimensional electrophoresis, and 5.2 and 5.3 pIs for Braziliase-I and II were observed, respectively. The molecular mass was determined with values ​​of 13,894 and 13,869Da for Braziliase-I and II, respectively. Amino acid sequence by Edman degradation and mass spectrometry completed 87% and 74% of the sequences, respectively for Braziliase-I and II. Molecular modeling of isolated PLA2s using acid PLA2BthA-I-PLA2 from B. jararacussu template showed high quality. Both acidic PLA2s showed no significant myotoxic activity, however they induced significant oedematogenic activity. Braziliase-I and II (100µg/mL) showed 31.5% and 33.2% of cytotoxicity on Trypanosoma cruzi and 26.2% and 19.2% on Leishmania infantum, respectively. Braziliase-I and II (10µg) inhibited 96.98% and 87.98% of platelet aggregation induced by ADP and 66.94% and 49% induced by collagen, respectively. The acidic PLA2s biochemical and structural characterization can lead to a better understanding of its pharmacological effects and functional roles in snakebites pathophysiology, as well as its possible biotechnological applications as research probes and drug leads.


Assuntos
Fosfolipases A2/química , Inibidores da Agregação Plaquetária/química , Agregação Plaquetária/efeitos dos fármacos , Venenos de Serpentes/química , Sequência de Aminoácidos/genética , Animais , Bothrops/genética , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/patogenicidade , Modelos Moleculares , Fosfolipases A2/genética , Fosfolipases A2/isolamento & purificação , Fosfolipases A2/farmacologia , Inibidores da Agregação Plaquetária/isolamento & purificação , Inibidores da Agregação Plaquetária/farmacologia , Homologia de Sequência de Aminoácidos , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
10.
Basic Clin Pharmacol Toxicol ; 122(4): 413-423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29067765

RESUMO

Snake venom phospholipases A2 (PLA2 s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA2 homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA2 s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 µg/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA2 from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.


Assuntos
Antibacterianos/farmacologia , Venenos de Crotalídeos/enzimologia , Fosfolipases A2/química , Viperidae , Animais , Antibacterianos/síntese química , Cromatografia em Gel/métodos , Cromatografia de Fase Reversa/métodos , Venenos de Crotalídeos/química , Desenho de Fármacos , Ensaios Enzimáticos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/síntese química , Peptídeos/farmacologia , Fosfolipases A2/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos
11.
Basic Clin Pharmacol Toxicol, v.122, n.4, p.413-423, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2397

RESUMO

Snake venom phospholipases A(2) (PLA(2)s) are responsible for numerous pathophysiological effects in snakebites; however, their biochemical properties favour antimicrobial actions against different pathogens, thus constituting a true source of potential microbicidal agents. This study describes the isolation of a Lys49 PLA(2) homologue from Lachesis muta muta venom using two chromatographic steps: size exclusion and reverse phase. The protein showed a molecular mass of 13,889 Da and was devoid of phospholipase activity on an artificial substrate. The primary structure made it possible to identify an unpublished protein from L. m. muta venom, named LmutTX, that presented high identity with other Lys49 PLA(2)s from bothropic venoms. Synthetic peptides designed from LmutTX were evaluated for their cytotoxic and antimicrobial activities. LmutTX was cytotoxic against C2C12 myotubes at concentrations of at least 200 g/mL, whereas the peptides showed a low cytolytic effect. LmutTX showed antibacterial activity against Gram-positive and Gram-negative bacteria; however, S. aureusATCC 29213 and MRSA strains were more sensitive to the toxin's action. Synthetic peptides were tested on S. aureus, MRSA and P. aeruginosaATCC 27853 strains, showing promising results. This study describes for the first time the isolation of a Lys49 PLA(2) from Lachesis snake venom and shows that peptides from specific regions of the sequence may constitute new sources of molecules with biotechnological potential.

13.
PLoS One ; 11(3): e0151363, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028872

RESUMO

Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.


Assuntos
Antivenenos , Bothrops , Venenos de Crotalídeos , Fosfolipases A2 do Grupo II , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única , Animais , Antivenenos/química , Antivenenos/genética , Antivenenos/imunologia , Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/toxicidade , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/imunologia , Fosfolipases A2 do Grupo II/toxicidade , Masculino , Camundongos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-26827743

RESUMO

Snake venom toxins are related not only in detention, death and the promotion of initial digestion of prey but also due to their different biochemical, structural and pharmacological effects they can result in new drugs. Among these toxins snake venom serine proteases (SVSPs) should be highlighted because they are responsible for inducing changes in physiological functions such as blood coagulation, fibrinolysis, and platelet aggregation. This article presents the first serine protease (SP) isolated from Bothrops brazili: BbrzSP-32. The new SP showed 36 kDa of relative molecular mass and its absolute mass was confirmed by mass spectrometry as 32,520 Da. It presents 79.48% identity when compared to other SVSPs and was able to degrade the α-chain of fibrinogen, in in vitro models, because of this it is considered a SVTLE-A. It showed dose-dependent activity in the process of degradation of fibrin networks demonstrating greater specificity for this activity when compared to its thrombolytic action. BbrzSP-32 demonstrated proteolytic activity on gelatin and chromogenic substrates for serine proteases and thrombin-like enzymes (S-2288 and S-2238 respectively), besides having coagulant activity on human plasma. After pre-incubation with PMSF and benzamidine the coagulant and proteolytic activities on the S-2288 and S-2238 substrates were reduced. BbrzSP-32 shows stability against pH and temperature variations, demonstrating optimum activity between 30 and 40 °C and in the pH range 7.5 to 8.5. A new SP with potential biotechnological application was isolated.


Assuntos
Venenos de Crotalídeos/química , Serina Proteases/isolamento & purificação , Sequência de Aminoácidos , Animais , Bothrops , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Serina Proteases/química
15.
BMC Complement Altern Med ; 15(1): 420, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608735

RESUMO

BACKGROUND: The Combretum leprosum Mart. plant, popularly known as mofumbo, is used in folk medicine for inflammation, pain and treatment of wounds. From this species, it is possible to isolate three triterpenes: (3ß, 6ß, 16ß-trihydroxylup-20(29)-ene) called lupane, arjunolic acid and molic acid. In this study, through preclinical tests, the effect of lupane was evaluated on the cytotoxicity and on the ability to activate cellular function by the production of TNF-α, an inflammatory cytokine, and IL-10, an immuno regulatory cytokine was assessed. The effect of lupane on the enzymes topoisomerase I and II was also evaluated. METHODS: For this reason, peripheral blood mononuclear cells (PBMCs) were obtained and cytotoxicity was assessed by the MTT method at three different times (1, 15 and 24 h), and different concentrations of lupane (0.3, 0.7, 1.5, 6, 3 and 12 µg/mL). The cell function was assessed by the production of TNF-α and IL-10 by PBMCs quantified by specific enzyme immunoassay (ELISA). The activity of topoisomerases was assayed by in vitro biological assays and in silico molecular docking. RESULTS: The results obtained showed that lupane at concentrations below 1.5 µg/mL was not toxic to the cells. Moreover, lupane was not able to activate cellular functions and did not alter the production of IL-10 and TNF-α. Furthermore, the data showed that lupane has neither interfered in the action of topoisomerase I nor in the action of topoisomerase II. CONCLUSION: Based on preclinical results obtained in this study, we highlight that the compound studied (lupane) has moderate cytotoxicity, does not induce the production of TNF-α and IL-10, and does not act on human topoisomerases. Based on the results of this study and taking into consideration the reports about the anti-inflammatory and leishmanicidal activity of 3ß, 6ß, 16ß-trihydroxylup-20(29)-ene, we suggest that this compound may serve as a biotechnological tool for the treatment of leishmaniasis in the future.


Assuntos
Anti-Inflamatórios/toxicidade , Combretum , Leucócitos Mononucleares/efeitos dos fármacos , Triterpenos/toxicidade , Anti-Inflamatórios/farmacologia , DNA Topoisomerases/metabolismo , Flores , Humanos , Interleucina-10/biossíntese , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
16.
Toxicon ; 103: 1-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26095535

RESUMO

The Micrurus genus is the American representative of Elapidae family. Micrurus spixii is endemic of South America and northern states of Brazil. Elapidic venoms contain neurotoxins that promote curare-mimetic neuromuscular blockage. In this study, biochemical and functional characterizations of M. spixii crude venom were performed and a new neurotoxic phospholipase A2 called MsPLA2-I was isolated. M. spixii crude venom caused severe swelling in the legs of tested mice and significant release of creatine kinase (CK) showing its myotoxic activity. Leishmanicidal activity against Leishmania amazonensis (IC50 1.24 µg/mL) was also observed, along with antiplasmodial activity against Plasmodium falciparum, which are unprecedented for Micrurus venoms. MsPLA2-I with a Mr 12,809.4 Da was isolated from the crude venom of M. spixii. The N-terminal sequencing of a fragment of 60 amino acids showed 80% similarity with another PLA2 from Micrurus altirostris. This toxin and the crude venom showed phospholipase activity. In a mouse phrenic nerve-diaphragm preparation, M. spixii venom and MsPLA2-I induced the blockage of both direct and indirect twitches. While the venom presented a pronounced myotoxic activity, MsPLA2-I expressed a summation of neurotoxic activity. The results of this study make M. spixii crude venom promising compounds in the exploration of molecules with microbicidal potential.


Assuntos
Venenos Elapídicos/química , Elapidae/metabolismo , Neurotoxinas/toxicidade , Fosfolipases A2/toxicidade , Sequência de Aminoácidos , Animais , Antiparasitários/farmacologia , Brasil , Creatina Quinase/metabolismo , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Camundongos , Dados de Sequência Molecular , Neurotoxinas/isolamento & purificação , Fosfolipases A2/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Conformação Proteica , Toxinas Biológicas
17.
Biomed Res Int ; 2014: 196754, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24738050

RESUMO

L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far.


Assuntos
Fatores Biológicos/química , Fatores Biológicos/farmacologia , L-Aminoácido Oxidase/química , L-Aminoácido Oxidase/farmacologia , Venenos de Serpentes/química , Venenos de Serpentes/farmacologia , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA