Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 15(41): 18281-9, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24068197

RESUMO

The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.

2.
ACS Nano ; 6(1): 151-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22214768

RESUMO

We use in situ scanning tunneling microscopy (STM) to investigate intercalation of the ferromagnetic 3d metals Ni and Fe underneath a graphene monolayer on Rh(111). Upon thermal annealing of graphene/Rh(111) with the deposited metal on top, we observe the formation of epitaxial monatomic nanoislands grown pseudomorphically on Rh(111) and covered by graphene. The size and shape of intercalated nanoislands is strongly influenced by the local spatial variation of the graphene-Rh bonding strength. In particular, the side length of the intercalated nanoislands shows maxima around discrete values imposed by the periodicity of the graphene moiré. Intercalation can be performed efficiently and without any visible damage of the graphene overlayer in the studied temperature range between 670 and 870 K. We identify the main intercalation path to be via diffusion through pre-existing lattice defects in graphene, accompanied by the second mechanism which is based on the material diffusion via metal-generated defects followed by the defect healing of the graphene lattice. We deem these graphene-capped and sharply confined ferromagnetic nanoislands interesting in the fields of spintronics and nanomagnetism.


Assuntos
Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ródio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...