Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 959: 277-302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23299683

RESUMO

Multiple ribosomes assemble onto an individual mRNA to form a polyribosome (polysome) complex. The epitope tagging of specific ribosomal proteins can enable the immunopurification of polysomes from crude cell extracts derived from cryopreserved tissue samples. Through expression of the epitope-tagged ribosomal protein in cell-type and regional specific domains of Arabidopsis thaliana and other organisms it is feasible to quantitatively assess the mRNAs that are associated with ribosomes with cell-specific resolution. Here we present detailed methods for development of transgenics that express a FLAG-tagged version of ribosomal protein L18 (RPL18) under the direction of individual promoters with specific domains of expression, the immunopurification of ribosomes, and bioinformatic analyses of the resultant datasets obtained by microarray profiling. This methodology provides researchers with the opportunity to assess rapid changes at the organ, tissue, regional or cell-type specific level of mRNAs that are associated with ribosomes and therefore engaged in translation.


Assuntos
RNA Mensageiro/isolamento & purificação , Ribossomos/metabolismo , RNA Mensageiro/genética , Proteínas Ribossômicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(44): 18843-8, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19843695

RESUMO

Multicellular organs are composed of distinct cell types with unique assemblages of translated mRNAs. Here, ribosome-associated mRNAs were immunopurified from specific cell populations of intact seedlings using Arabidopsis thaliana lines expressing a FLAG-epitope tagged ribosomal protein L18 (FLAG-RPL18) via developmentally regulated promoters. The profiling of mRNAs in ribosome complexes, referred to as the translatome, identified differentially expressed mRNAs in 21 cell populations defined by cell-specific expression of FLAG-RPL18. Phloem companion cells of the root and shoot had the most distinctive translatomes. When seedlings were exposed to a brief period of hypoxia, a pronounced reprioritization of mRNA enrichment in the cell-specific translatomes occurred, including a ubiquitous rise in 49 mRNAs encoding transcription factors, signaling proteins, anaerobic metabolism enzymes, and uncharacterized proteins. Translatome profiling also exposed an intricate molecular signature of transcription factor (TF) family member mRNAs that was markedly reconfigured by hypoxia at global and cell-specific levels. In addition to the demonstration of the complexity and plasticity of cell-specific populations of ribosome-associated mRNAs, this study provides an in silico dataset for recognition of differentially expressed genes at the cell-, region-, and organ-specific levels.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biossíntese de Proteínas , Hipóxia Celular , Especificidade de Órgãos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...