Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32746195

RESUMO

Recent works highlighted the significant potential of lung ultrasound (LUS) imaging in the management of subjects affected by COVID-19. In general, the development of objective, fast, and accurate automatic methods for LUS data evaluation is still at an early stage. This is particularly true for COVID-19 diagnostic. In this article, we propose an automatic and unsupervised method for the detection and localization of the pleural line in LUS data based on the hidden Markov model and Viterbi Algorithm. The pleural line localization step is followed by a supervised classification procedure based on the support vector machine (SVM). The classifier evaluates the healthiness level of a patient and, if present, the severity of the pathology, i.e., the score value for each image of a given LUS acquisition. The experiments performed on a variety of LUS data acquired in Italian hospitals with both linear and convex probes highlight the effectiveness of the proposed method. The average overall accuracy in detecting the pleura is 84% and 94% for convex and linear probes, respectively. The accuracy of the SVM classification in correctly evaluating the severity of COVID-19 related pleural line alterations is about 88% and 94% for convex and linear probes, respectively. The results as well as the visualization of the detected pleural line and the predicted score chart, provide a significant support to medical staff for further evaluating the patient condition.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Pleura/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Ultrassonografia/métodos , Algoritmos , COVID-19 , Humanos , Pandemias , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte
2.
IEEE Trans Image Process ; 26(9): 4414-4429, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28641255

RESUMO

Variational models are known to work well for addressing image restoration/regularization problems. However, most of the methods proposed in the literature are defined for scalar inputs and are used on multiband images (such as RGB or multispectral imagery) by the composition of a simple band-wise processing. This involves suboptimal results and may introduce artifacts. Only in a few cases, variational models are extended to the case of vector-valued inputs. However, the known implementations are restricted to the first-order models, while the second-order models are never considered. Thus, typical problems of the first-order models, such as the staircasing effect cannot be overtaken. This paper considers a second-order functional model to function approximation with free discontinuities given by Blake-Zisserman (BZ) and proposes an efficient minimization algorithm in the case of vector-valued inputs. In the BZ model, the Hessian of the solution is penalized outside a set of finite length, therefore the solution is forced to be piecewise linear. Moreover, the model allows the formation of free discontinuities and free gradient discontinuities. The proposed algorithm is applied to difficult color image restoration/regularization problems and to piecewise linear approximation of curves in space.

3.
IEEE Trans Image Process ; 24(12): 5004-16, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26336124

RESUMO

The problem of estimating the parameters of a Rayleigh-Rice mixture density is often encountered in image analysis (e.g., remote sensing and medical image processing). In this paper, we address this general problem in the framework of change detection (CD) in multitemporal and multispectral images. One widely used approach to CD in multispectral images is based on the change vector analysis. Here, the distribution of the magnitude of the difference image can be theoretically modeled by a Rayleigh-Rice mixture density. However, given the complexity of this model, in applications, a Gaussian-mixture approximation is often considered, which may affect the CD results. In this paper, we present a novel technique for parameter estimation of the Rayleigh-Rice density that is based on a specific definition of the expectation-maximization algorithm. The proposed technique, which is characterized by good theoretical properties, iteratively updates the parameters and does not depend on specific optimization routines. Several numerical experiments on synthetic data demonstrate the effectiveness of the method, which is general and can be applied to any image processing problem involving the Rayleigh-Rice mixture density. In the CD context, the Rayleigh-Rice model (which is theoretically derived) outperforms other empirical models. Experiments on real multitemporal and multispectral remote sensing images confirm the validity of the model by returning significantly higher CD accuracies than those obtained by using the state-of-the-art approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...