Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 30(21): 1907-1918, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34104971

RESUMO

Much of the complexity of the eukaryotic cell transcriptome is due to the alternative splicing of mRNA. However, knowledge on how transcriptome complexity is translated into functional complexity remains limited. For example, although different isoforms of a gene may show distinct temporal and spatial expression patterns, it is largely unknown whether these isoforms encode proteins with distinct functions matching their expression pattern. In this report, we investigated the function and relationship of the two isoforms of Reep6, namely Reep6.1 and Reep6.2, in rod photoreceptor cells. These two isoforms result from the alternative splicing of exon 5 and show mutually exclusive expression patterns. Reep6.2 is the canonical isoform that is expressed in non-retinal tissues, whereas Reep6.1 is the only expressed isoform in the adult retina. The Reep6.1 isoform-specific knockout mouse, Reep6E5/E5, is generated by deleting exon 5 and a homozygous deletion phenotypically displayed a rod degeneration phenotype comparable to a Reep6 full knockout mouse, indicating that the Reep6.1 isoform is essential for the rod photoreceptor cell survival. Consistent with the results obtained from a loss-of-function experiment, overexpression of Reep6.2 failed to rescue the rod degeneration phenotype of Reep6 knockout mice whereas overexpression of Reep6.1 does lead to rescue. These results demonstrate that, consistent with the expression pattern of the isoform, Reep6.1 has rod-specific functions that cannot be substituted by its canonical isoform. Our findings suggested that a strict regulation of splicing is required for the maintenance of photoreceptor cells.


Assuntos
Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Retina/metabolismo , Processamento Alternativo , Animais , Córtex Cerebral/metabolismo , Eletrorretinografia , Imunofluorescência , Genótipo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Isoformas de Proteínas , RNA Mensageiro
2.
Biol Reprod ; 102(6): 1234-1247, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101290

RESUMO

Receptor accessory protein 6 (REEP6) is a member of the REEP/Ypt-interacting protein family that we recently identified as essential for normal endoplasmic reticulum homeostasis and protein trafficking in the retina of mice and humans. Interestingly, in addition to the loss of REEP6 in our knockout (KO) mouse model recapitulating the retinal degeneration of humans with REEP6 mutations causing retinitis pigmentosa (RP), we also found that male mice are sterile. Herein, we characterize the infertility caused by loss of Reep6. Expression of both Reep6 mRNA transcripts is present in the testis; however, isoform 1 becomes overexpressed during spermiogenesis. In vitro fertilization assays reveal that Reep6 KO spermatozoa are able to bind the zona pellucida but are only able to fertilize oocytes lacking the zona pellucida. Although spermatogenesis appears normal in KO mice, cauda epididymal spermatozoa have severe motility defects and variable morphological abnormalities, including bent or absent tails. Immunofluorescent staining reveals that REEP6 expression first appears in stage IV tubules within step 15 spermatids, and REEP6 localizes to the connecting piece, midpiece, and annulus of mature spermatozoa. These data reveal an important role for REEP6 in sperm motility and morphology and is the first reported function for a REEP protein in reproductive processes. Additionally, this work identifies a new gene potentially responsible for human infertility and has implications for patients with RP harboring mutations in REEP6.


Assuntos
Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Espermatozoides/citologia , Espermatozoides/fisiologia , Animais , Proteínas do Olho/genética , Regulação da Expressão Gênica , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Hum Gene Ther ; 30(3): 302-315, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30101608

RESUMO

Hereditary retinal dystrophy is clinically defined as a broad group of chronic and progressive disorders that affect visual function by causing photoreceptor degeneration. Previously, we identified mutations in the gene encoding receptor expression-enhancing protein 6 (REEP6), in individuals with autosomal recessive retinitis pigmentosa (RP), the most common form of inherited retinal dystrophy. One individual was molecularly diagnosed with biallelic REEP6 mutations, a missense mutation over a frameshift mutation. In this study, we generated Reep6 compound heterozygous mice, Reep6L135P/-, which mimic the patient genotype and recapitulate the early-onset retinal degeneration phenotypes observed in the individual with RP. To determine the feasibility of rescuing the Reep6 mutant phenotype via gene replacement therapy, we delivered Reep6.1, the mouse retina-specific isoform of REEP6, to photoreceptors of Reep6 mutant mice on postnatal day 20. Evaluation of the therapeutic effects 2 months posttreatment showed improvements in the photoresponse as well as preservation of photoreceptor cells. Importantly, guanylyl cyclase 1 (GC1) expression was also restored to the outer segment after treatment. Furthermore, rAAV8-Reep6.1 single treatment in Reep6 mutant mice 1 year postinjection showed significant improvements in retinal function and morphology, suggesting that the treatment is effective even after a prolonged period. Findings from this study show that gene replacement therapy in the retina with rAAV overexpressing Reep6 is effective, preserving photoreceptor function in Reep6 mutant mice. These findings provide evidence that rAAV8-based gene therapy can prolong survival of photoreceptors in vivo and can be potentially used as a therapeutic modality for treatment of patients with RP.


Assuntos
Proteínas do Olho/genética , Terapia Genética , Proteínas de Membrana/genética , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Eletrorretinografia , Estresse do Retículo Endoplasmático/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Genótipo , Guanilato Ciclase/metabolismo , Imuno-Histoquímica , Luz , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação , Transporte Proteico , Receptores de Superfície Celular/metabolismo , Degeneração Retiniana/diagnóstico , Transdução Genética , Transgenes
4.
Exp Eye Res ; 173: 32-43, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29674119

RESUMO

NMNAT1 (nicotinamide mononucleotide adenylyltransferase 1) encodes a rate-limiting enzyme that catalyzes the biosynthesis of NAD+ and plays a role in neuroprotection. Mutations in NMNAT1 have been identified to cause a recessive, non-syndromic early form of blindness genetically defined as Leber Congenital Amaurosis 9 (LCA9). One of the most common alleles reported so far in NMNAT1 is the c.769G > A (E257K) missense mutation, which occurs in 70% of all LCA9 cases. However, given its relatively high population frequency and the observation of individuals with homozygous E257K variant without phenotype, the pathogenicity of this allele has been questioned. To address this issue, we have studied the pathogenic effects of this allele by generating a knock-in mouse model. Interestingly, no obvious morphological or functional defects are observed in Nmnat1 E257K homozygous mice up to one year old, even after light-damage. Together with the previous clinical reports, we propose that the E257K allele is a weak hypomorphic allele that has significantly reduced penetrance in the homozygous state. In contrast, compound heterozygous Nmnat1E257K/- mice exhibit photoreceptor defects which are exacerbated upon exposure to light. Furthermore, retina tissue- specific Nmnat1 conditional knockout mice exhibit photoreceptor degeneration before the retina has terminally differentiated. These findings suggest that NMNAT1 plays an important role in photoreceptors and is likely involved in both retinal development and maintenance of photoreceptor integrity.


Assuntos
Variação Genética/fisiologia , Amaurose Congênita de Leber/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Degeneração Retiniana/genética , Alelos , Animais , Eletrorretinografia , Éxons/genética , Feminino , Técnicas de Introdução de Genes , Amaurose Congênita de Leber/patologia , Luz , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes , Fenótipo , Mutação Puntual , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia , Retina/fisiopatologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...