Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14656, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37020944

RESUMO

Objective: Developing and assessing a risk prediction model of postoperative atrial fibrillation (POAF) after coronary artery bypass grafting (CABG), and aims to provide a reference for the prediction and prevention. Design: A retrospective case-control study. Setting: Three major urban teaching and university hospitals and tertiary referral centers. Participants: consecutive patients undergoing CABG. Interventions: The study was retrospective and no interventions were administered to patients. Measurements and main results: In the study, the overall new-onset POAF prevalence was approximately 28%. A prediction model for POAF with nine significant indicators was developed, and identified new predictors of POAF: left ventricular end diastolic diameter (LVEDD), intraoperative defibrillation, and intraoperative temporary pacing lead implantation. The model had good discrimination in both the derivation and validation cohorts, with the area under the receiver operating characteristic curves (AUCs) of 0.621 (95% CI = 0.602-0.640) and 0.616 (95% CI = 0.579-0.651), respectively, and showed good calibration. Compared with CHA2DS2-VASc, HATCH score, and the prediction model of POAF after CABG developed based on a small sample of clinical data from a single center in China, the model in this study had better discrimination. Conclusion: We have developed and validated a new prediction model of POAF after CABG using multicenter data that can be used in the clinic for early identification of high-risk patients of POAF, and to help effectively prevent POAF in postoperative patients.

2.
Artif Organs ; 46(7): 1334-1345, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35167127

RESUMO

OBJECTIVES: An acute animal experiment was performed to observe factors influencing the functional status of the aortic valve functional status after continuous-flow left ventricular assist device (CF-LVAD) implantation in an ovine model, and a physiologic predictive model was established. METHODS: A CF-LVAD model was established in Small Tail Han sheep. The initial heart rate (HR) was set to 60 beats/min, and grouping was performed at an interval of 20 beats/min. In all groups, the pump speed was started from 2000 rpm and was gradually increased by 50-100 rpm. A multi-channel physiological recorder recorded the HR, aortic pressure, central venous pressure, and left ventricular systolic pressure (LVSP). A double-channel ultrasonic flowmeter was used to obtain real-time artificial vascular blood flow (ABF). A color Doppler ultrasound device was applied to assess the aortic valve functional status. Multivariate dichotomous logistic regression was used to screen significant variables for predicting the functional status of the aortic valve. RESULTS: Observational studies showed that ABF and the risk of aortic valve closure (AVC) were positively correlated with pump speed at the same HR. Meanwhile, the mean arterial pressure (MAP) was unaltered or slightly increased with increased pump speed. When the pump speed was constant, an increase in HR was associated with a decrease in the size of the aortic valve opening. This phenomenon was accompanied by an initial transient increase in the ABF and MAP, which subsequently decreased. Statistical analysis showed that the AVC was associated with increased pump speed (OR = 1.02, 95% CI = 1.01-1.04, p = 0.001), decreased LVSP (OR = 0.95, 95% CI = 0.91-0.98, p = 0.003), and decreased pulse pressure (OR = 0.82, 95% CI = 0.68-0.96, p = 0.026). ABF or MAP was negatively associated with the risk of AVC (OR < 1). The prediction model of AVC after CF-LVAD implantation exhibited good differentiation (AUC = 0.973, 95% CI = 0.978-0.995) and calibration performance (Hosmer-Lemeshow χ2  = 9.834, p = 0.277 > 0.05). CONCLUSIONS: The pump speed, LVSP, ABF, MAP, and pulse pressure are significant predictors of the risk of AVC. Predictive models built from these predictors yielded good performance in differentiating aortic valve opening and closure after CF-LVAD implantation.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Animais , Valva Aórtica/cirurgia , Estado Funcional , Coração Auxiliar/efeitos adversos , Hemodinâmica/fisiologia , Humanos , Ovinos
3.
Front Cardiovasc Med ; 9: 1000352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698959

RESUMO

Objectives: This study attempted to explore the hemodynamics and potential mechanisms driving pulmonary circulation in status of ventricular fibrillation (VF) following continuous-flow left ventricular assist device (CF-LVAD) implantation. Methods: An ovine CF-LVAD model was built in small-tailed Han sheep, with the pump speed set as 2,400 rpm. VF was induced following ventricular tachycardia using a temporary pacemaker probe to stimulate the right and left ventricular free walls. The central venous pressure (CVP), pump flow (PF), pulmonary artery flow (PAF) and other major indicators were observed and recorded after VF. Results: Low-flow systemic and pulmonary circulation could be sustained for 60 min under VF with sinus atrial rhythm after CF-LVAD implantation. The CVP gradually increased. The mean PF declined from 1.80 to 1.20 L/min, and the mean PAF decreased from 1.62 L/min to 0.87 L/min. Under VF with atrial fibrillation, the systemic and pulmonary circulation couldn't be sustained. The CVP jumped from the 5 mmHg baseline to 12 mmHg, the mean PF rapidly decreased from 3.45 L/min to 0.79 L/min, and the PAF declined from 3.94 L/min to 0.77 L/min. Conclusion: The atrial rhythm and function might be essential for the circulation maintenance in patients with VF after CF-LVAD implantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...