Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139282, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37348615

RESUMO

Removal of Metronidazole (MNZ) and Oxytetracycline (OTC) from wastewater by the prepared (C, N codoped)-TiO2/g-C3N4 (Graphitic carbon nitride) was examined. l-Arginine (C, N codoped)-TiO2 and l-Arginine (C, N codoped)-TiO2/g-C3N4 photocatalysts were successfully synthesized through the sol-gel method, and optimal ratio of l-arginine:TiO2, as well as l-arginine/TiO2:g-C3N4, was determined by a kinetic study of photodegradation process. The maximum photocatalytic removal rate (0.062 min-1 for MNZ removal) was observed using 1% l-Arginine-TiO2/g-C3N4 (1:1) under visible light illumination, 2.2 and 12.4 times greater than those of 1% l-Arginine-TiO2 and pure TiO2, respectively. l-Arginine (1%)-TiO2/g-C3N4 (1:1) (co-doped-TCN) was investigated using X-ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), Photo-luminescence (PL), and Differential Reflectance Spectroscopy (DRS) as the best-performing photocatalyst. Response surface methodology (RSM) was used to study the effect of co-doped-TCN dosage (0.5-1.0 g/L), pH of simulated wastewater (4-10), initial concentration of MNZ and OTC (50-100 mg/L), and irradiation time (30-90 min for MNZ and 20-40 min for OTC) on removal efficiency of the antibiotics. Also, their optimum values were determined by RSM. The treated pharmaceutical wastewater showed high biodegradability features with 5-day biological oxygen demand/chemical oxygen demand (BOD5/COD) of 0.51 and 0.46 after 40 and 100 min reaction for OTC and MNZ, respectively. The order of reactive species responsible for the photodegradation of pollutants was •O2─> •OH > h+>1O2. The effect of inorganic anions showed that all anions decreased the removal efficiency of both antibiotics in order of NO3─> Cl─ >SO42─>HPO42─ >HCO3─ for MNZ and NO3─> SO42─ > Cl─ >HPO42─ >HCO3─ for OTC. Also, introducing different oxidants improved the photocatalytic removal efficiency with the order of H2O2>K2S2O8> KBrO3.


Assuntos
Oxitetraciclina , Metronidazol , Fotólise , Peróxido de Hidrogênio , Águas Residuárias , Luz , Antibacterianos/química , Catálise
2.
J Environ Manage ; 326(Pt B): 116691, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402013

RESUMO

L-Proline (2%)-TiO2/BiOBr (30%) nanocomposite was synthesized to obtain high photocatalytic performance in the visible light region and infrared radiation(IR) for methylene blue (MB) and congo red (CR) removal from the contaminated wastewater. L-Proline (2%)-TiO2/BiOBr (30%) photocatalyst with strong absorption near IR wavelength and high charge separation ability was fabricated for the first time. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field-emission scanning electron microscope (FESEM)/Energy Dispersive X-ray (EDX), UV-Vis diffuse reflectance spectrum (DRS), photoluminescence (PL) and Brunauer-Emmett-Teller (BET) characterization techniques show that the visible driven nanocomposite was successfully synthesized. According to the UV-DRS analysis, the estimated band gaps for the L-proline (2%)-TiO2 and L-Proline (2%)-TiO2/BiOBr (30%) nanostructures were respectively 2.3 eV and 2.1 eV.The nanoparticles exhibited enhanced photocatalytic activity (93-100%) and high mineralization efficiency (71-89% TOC removal) for both the dyes. The best photocatalytic activity was achieved by adding 2 wt% of L-Proline and 30 wt% of BiOBr into TiO2 sol. Response surface methodology (RSM) was employed to find significant parameters and their optimum values for maximum degradation, which show pH, dye concentration, irradiation time, and catalyst dosage for both the dyes are significant. The best photocatalytic degradation efficiency was achieved at the optimum conditions of pH = 7.7, catalyst dosage = 0.71 g/L, irradiation time = 142 and dye concentration = 11 mg/L for MB. Scavenger study showed that •OH radicals are responsible for the degradation process.


Assuntos
Corantes , Nanocompostos , Prolina , Titânio/química , Luz , Catálise , Nanocompostos/química , Azul de Metileno
3.
Environ Technol ; 43(9): 1269-1284, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32967578

RESUMO

The visible active N-doped TiO2/ZnFe2O4 (urea-TiO2/ZnFe2O4) and CN-codoped TiO2/ZnFe2O4 (L-asparagine-TiO2/ZnFe2O4) nanocomposites were successfully synthesized by the sol-gel-hydrothermal method for direct red 16 (DR16) photodegradation. Their properties of the prepared nanocomposites were analysed using XRD, FT-IR, FE-SEM, EDX, DRS and PL tests. The DRS and PL results confirmed a narrow band-gap energy and low recombination rate of photo-produced electron and hole pairs, respectively. The effect of adding various dopant agents (urea and L-asparagine) with different loadings and magnetic nanoparticle (ZnFe2O4) into TiO2 sol on the photodegradation of DR16 was also evaluated. As a result, the L-asparagine (2 wt. %)-TiO2/ZnFe2O4 is the best photocatalyst compared to the other modified TiO2 nanocomposites due to its narrow band gap and high quantum efficiency. The catalyst concentration (1-2 g/L), DR16 concentration (25-45 ppm), initial pH (4-10), and irradiation time (30-90 min) as numerical variables were also considered for photocatalytic process analysis and moulding by central composite design (CCD). The increase in the pH and dye concentration reduces the photodegradation efficiency while irradiation time and catalyst concentration effectively improved its photodegradation efficiency. The DR16 was completely removed at 25 ppm of DR16, initial pH of 4 and 1.5 g/L of photocatalyst after 90-min irradiation. The photoactivity test was also repeated four times by reused L-asparagine-TiO2/ZnFe2O4 photocatalyst at optimum conditions. The decrease of dye degradation and loss of photocatalyst were not significant which was approved by the good performance and high recovery capability of the prepared nanocomposite.


Assuntos
Nanocompostos , Águas Residuárias , Compostos Azo , Catálise , Luz , Nanocompostos/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Água
4.
J Hazard Mater ; 369: 384-397, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30784968

RESUMO

The aim of current study is to synthesis novel visible driven photocatalysts (L-Histidine (C, N) codoped-TiO2-CdS) with different loadings of L-Hisitdine (1, 2, and 3 wt.%) and CdS (1:9, 7:1, and 1:5 mass ratios of CdS to TiO2). Then, their application for photo-degradation of methyl orange (MO) and biologically treated palm oil mill effluent (POME) were studied. The structure, optical properties, and morphology of the prepared nanocomposites were also characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR), photoluminescence spectroscopy (PL), and diffuse reflectance spectra (DRS). DRS results indicated that all the modified samples with different L-Hisitdine and CdS loadings showed a red shift to visible region. The results of photo-degradation experiments showed that L-Hisitdine with a weight fraction of 2% and mass ratio of TiO2 to CdS of 7:1 were the optimum amount of the modifiers in the photocatalyst network. The PL intensity of the photocatalyst decreased with addition of L-Hisitdine and CdS nanoparticles due to a decrease in e-/h+ recombination. The effects of organic pollutant concentration, initial pH, catalyst concentration, and irradiation time on the photo-degradation process of MO and POME were studied using full faced centered central composite design (CCFD) under response surface methodology (RSM). The obtained results showed that MO was completely removed at initial concentration of 10 mg/L, acidic pH, and catalyst loading of 1.5 g/L after 120 min. The complete degradation of biologically treated POME was achieved at original pH, 300 mg/L of chemical oxygen demand (COD) concentration, catalyst loading of 2 g/L, and irradiation time of 2 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...