Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 104(3): 357-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24661625

RESUMO

The greenhouse whitefly Trialeurodes vaporariorum Westwood, 1856 (Hemiptera: Aleyrodidae) is an invasive and highly polyphagous phloem-feeding pest of vegetables and ornamentals. Trialeurodes vaporariorum causes serious damage due to direct feeding and transmits several important plant viruses. Excessive use of insecticides has resulted in significantly reduced levels of susceptibility of various T. vaporariorum populations. To determine the genetic variability within and among populations of T. vaporariorum from Serbia and to explore their genetic relatedness with other T. vaporariorum populations, we analysed the mitochondrial cytochrome c oxidase I (COI) sequences of 16 populations from Serbia and six neighbouring countries: Montenegro (three populations), Macedonia (one population) and Croatia (two populations), for a total of 198 analysed specimens. A low overall level of sequence divergence and only five variable nucleotides and six haplotypes were found. The most frequent haplotype, H1, was identified in all Serbian populations and in all specimens from distant localities in Croatia and Macedonia. The COI sequence data that was retrieved from GenBank and the data from our study indicated that H1 is the most globally widespread T. vaporariorum haplotype. A lack of spatial genetic structure among the studied T. vaporariorum populations, as well as two demographic tests that we performed (Tajima's D value and Fu's Fs statistics), indicate a recent colonisation event and population growth. Phylogenetic analyses of the COI haplotypes in this study and other T. vaporariorum haplotypes that were retrieved from GenBank were performed using Bayesian inference and median-joining (MJ) network analysis. Two major haplogroups with only a single unique nucleotide difference were found: haplogroup 1 (containing the five Serbian haplotypes and those previously identified in India, China, the Netherlands, the United Kingdom, Morocco, Reunion and the USA) and haplogroup 3 (containing the single Serbian haplotype H3 and haplotypes from Costa Rica, the USA and Spanish Canary Islands). Collectively, our data indicate a rather limited value of COI as a genetic marker for discrimination between different T. vaporariorum populations in the investigated area. Possible explanations for the observed lack of COI sequence variability, such as specific genetics of biological invasion and/or the influence of bacterial symbionts that manipulate insect reproduction, are discussed.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Hemípteros/genética , Animais , Península Balcânica , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hemípteros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Sérvia
2.
Bull Entomol Res ; 103(1): 48-59, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22698088

RESUMO

Several whitefly species (Hemiptera: Aleyrodidae) are cosmopolitan phloem-feeders that cause serious damage in numerous agricultural crops. All whitefly species harbor a primary bacterial symbiont and a diverse array of secondary symbionts which may influence several aspects of the insect's biology. We surveyed infections by secondary symbionts in Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood) and Siphoninus phillyreae (Haliday) from areas in the east cost of the Adriatic Sea. Both the Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) B. tabaci genetic groups were detected in Montenegro, whereas only the MED was confirmed in Croatia. Trialeurodes vaporariorum and S. phillyreae were found in all areas surveyed. MEAM1 and MED exhibited similarity to previously reported infections, while populations of T. vaporariorum from Montenegro harbored Rickettsia, Wolbachia and Cardinium in addition to previously reported Hamiltonella and Arsenopnohus. Siphoninus phillyreae harbored Hamiltonella, Wolbachia, Cardinium and Arsenophonus, with the latter appearing in two alleles. Multiple infections of all symbionts were common in the three insect species tested, with some reaching near fixation. Florescent in situ hybridization showed new localization patterns for Hamiltonella in S. phillyreae, and the morphology of the bacteriosome differed from that observed in other whitefly species. Our results show new infections with bacterial symbionts in the whitefly species studied. Infections with the same symbionts in reproductively isolated whitefly species confirm complex relationships between whiteflies and bacterial symbionts, and suggest possible horizontal transfer of some of these bacteria.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Hemípteros/microbiologia , Hemípteros/fisiologia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Croácia , Feminino , Hemípteros/genética , Hibridização in Situ Fluorescente , Montenegro , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...