Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 469: 323-331, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31693921

RESUMO

Post-transplant lymphoproliferative disorders (PTLD) represent a severe complication in transplanted patients and Epstein-Barr Virus (EBV) is the main driver. Besides immunodepression, immune activation/chronic inflammation play an important role in both virus reactivation and expansion of EBV-positive B cells. The aim of this study was to assess the impact of immunosuppressive strategies on factors involved in the PTLD's pathogenesis. 124 kidney transplanted patients were enrolled in this study: 71 were treated with mycophenolic acid (MPA) and 53 treated with mTOR inhibitor (mTORi), both in combination with different doses of calcineurin inhibitor. At the time of the transplant (T0), profile of inflammation/immune activation and immune senescence didn't differ between the two groups, but after one year of treatment (T1) markers were significantly higher in MPA-treated patients; their immunosenescence process was supported by the greater erosion of telomeres despite their younger age. Percentages of activated B cells and levels of EBV-DNA significantly increased in MPA-treated patients, and at T1 were significantly higher in MPA- than in mTORi-treated patients. Overall, these findings indicate that mTOR inhibitors constrain the inflammation/immune activation and senescence status, thus reducing the expansion of EBV-infected B cells and the risk of virus-associated PTLD in kidney transplant recipients.


Assuntos
Infecções por Vírus Epstein-Barr/tratamento farmacológico , Transplante de Rim/efeitos adversos , Transtornos Linfoproliferativos/prevenção & controle , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adulto , Linfócitos B/imunologia , Linfócitos B/virologia , Calcineurina/genética , Inibidores de Calcineurina/administração & dosagem , Senescência Celular/efeitos dos fármacos , Senescência Celular/imunologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/patogenicidade , Humanos , Imunossupressores/administração & dosagem , Rim/efeitos dos fármacos , Rim/imunologia , Rim/patologia , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/imunologia , Transtornos Linfoproliferativos/virologia , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/administração & dosagem , Serina-Treonina Quinases TOR/genética , Carga Viral
2.
Sci Rep ; 7: 46711, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429761

RESUMO

Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of ß2-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type ß2-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The ß2-microglobulin -binding nanobody, Nb24, more potently inhibits D76N ß2-microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In ß2-microglobulin knock out mice, the D76N ß2-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type ß2-microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis.


Assuntos
Amiloidose/imunologia , Anticorpos de Domínio Único/imunologia , Microglobulina beta-2/imunologia , Amiloide/efeitos dos fármacos , Amiloide/imunologia , Amiloide/metabolismo , Amiloidose/metabolismo , Amiloidose/prevenção & controle , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacocinética , Doxiciclina/farmacologia , Humanos , Camundongos da Linhagem 129 , Camundongos Knockout , Mutação de Sentido Incorreto , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/prevenção & controle , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Distribuição Tecidual/efeitos dos fármacos , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
3.
Nanoscale ; 9(11): 3941-3951, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28265615

RESUMO

Nanoparticles have repeatedly been shown to enhance fibril formation when assayed with amyloidogenic proteins. Recently, however, evidence casting some doubt about the generality of this conclusion started to emerge. Therefore, to investigate further the influence of nanoparticles on the fibrillation process, we used a naturally occurring variant of the paradigmatic amyloidogenic protein ß2-microglobulin (ß2m), namely D76N ß2m where asparagine replaces aspartate at position 76. This variant is responsible for aggressive systemic amyloidosis. After characterizing the interaction of the variant with citrate-stabilized gold nanoparticles (Cit-AuNPs) by NMR and modeling, we analyzed the fibril formation by three different methods: thioflavin T fluorescence, native agarose gel electrophoresis and transmission electron microscopy. The NMR evidence indicated a fast-exchange interaction involving preferentially specific regions of the protein that proved, by subsequent modeling, to be consistent with a dimeric adduct interacting with Cit-AuNPs. The fibril detection assays showed that AuNPs are able to hamper D76N ß2m fibrillogenesis through an effective interaction that competes with protofibril formation or recruitment. These findings open promising perspectives for the optimization of the nanoparticle surface to design tunable interactions with proteins.


Assuntos
Ácido Cítrico , Ouro , Nanopartículas Metálicas , Microglobulina beta-2/química , Amiloide/química , Fluorescência , Simulação de Acoplamento Molecular , Conformação Proteica
4.
Sci Rep ; 6: 25559, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150430

RESUMO

A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (ß2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed ß2m variants that alter the aggregation-prone exposed surface of wild-type and W60G ß2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in ß2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.


Assuntos
Mutação/genética , Agregados Proteicos/genética , Microglobulina beta-2/química , Microglobulina beta-2/genética , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Termodinâmica
5.
J Colloid Interface Sci ; 451: 78-84, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25890115

RESUMO

Polyurethene (PU) catheters were coated with 3-(trimethoxysilyl)-propyldimethyloctadecylammonium chloride (QAS) by means of a multistep process which involved a vapor phase plasma-induced graft-polymerization of acrylic acid (AAc). The AAc coating, whose stability in aqueous media was assessed by immersion in Phospate Buffer Saline (PBS), was characterized by means of Attenuated Total Reflectance Fourier Transform Infrared (ATR/FTIR) spectroscopy. Moreover, the COOH surface density was evaluated by a colorimetric assay with Methylene Blue. Carrying a negative charge at neutral pH, AAc coatings were proficient in positively charged molecules (like QAS) adsorption. ATR/FTIR spectroscopy and a colorimetric assay with Bromophenol Blue allowed us to verify the presence and the uniformity of the QAS coating on the PU catheters and the positive effect of the AAc graft-polymerization on the QAS adsorption. Morphological characterization of the QAS-modified catheters was performed by means of Atomic Force Microscopy (AFM). QAS-coated catheters displayed in vitro antimicrobial activity against Gram-negative Escherichia coli bacterial cells.


Assuntos
Antibacterianos/química , Catéteres/microbiologia , Materiais Revestidos Biocompatíveis/química , Escherichia coli/efeitos dos fármacos , Poliuretanos/química , Compostos de Amônio Quaternário/química , Silanos/química , Acrilatos/química , Acrilatos/farmacologia , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Humanos , Testes de Sensibilidade Microbiana , Poliuretanos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Silanos/farmacologia , Propriedades de Superfície
6.
J Mater Sci Mater Med ; 23(11): 2727-38, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22875605

RESUMO

The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.


Assuntos
Divisão Celular , Durapatita/química , Gases em Plasma , Alicerces Teciduais , Materiais Biocompatíveis , Células Cultivadas , Corantes Fluorescentes/química , Humanos , Microscopia Eletrônica de Varredura , Espectrometria de Fluorescência , Propriedades de Superfície , Difração de Raios X
7.
J Colloid Interface Sci ; 341(1): 53-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19822326

RESUMO

This work deals with the optimization of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) films in order to obtain surfaces with a reduced protein adsorption for possible biomedical applications. To this end, we examined the protein adsorption on the treated and untreated surfaces. The graft-polymerization process consisted of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. The efficiency of these processes was evaluated in terms of the amount of grafted polymer, coverage uniformity and substrates wettability. The process was monitored by contact angle measurements, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in Phosphate Buffer Saline (PBS) at 37 degrees C. The adsorption of fibrinogen and green fluorescent protein (GFP)--taken as model proteins--on the differently prepared surfaces was evaluated through a fluorescence approach using laser scanning confocal microscopy with photon counting detection. After plasma treatments of short duration, the protein adsorption decreases by about 60-70% with respect to that of the untreated film, while long plasma exposure resulted in a higher protein adsorption, due to damaging of the grafted polymer.


Assuntos
Acrilatos , Polietilenoglicóis/química , Polipropilenos/química , Proteínas/química , Acrilatos/química , Adsorção , Propriedades de Superfície
8.
J Colloid Interface Sci ; 322(2): 566-71, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18448111

RESUMO

Sulphur hexafluoride (SF(6)) plasma treatments and hexamethyl disiloxane (HMDSO) plasma polymerisation were performed on poly(ethylene terephthalate) (PET) meshes and the resulting wettability against liquids having very different surface tensions were investigated at the light of a possible use of the materials in the fuel/water separation technology. Surface modification of the meshes owing to HMDSO plasma polymerisation followed by SF(6) plasma treatment was also investigated. Hydrophobic performances were characterised refining the conventional Wilhelmy dynamic contact angle (DCA) technique, using several reference solutions having the surface tension values between 20-72 mN/m. Measurements of the water intrusion pressure (WIP) of the treated samples were also performed. Surface modifications on the plasma treated meshes were investigated by means of Fourier-transform infrared absorption spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis. SF(6) and HMDSO plasma treatments decrease the surface energy of the PET meshes, lowering the liquid surface tension at which the wettable/unwettable transition occurs and increasing the WIP. Moreover, an increase in hydrophobic performances was achieved with HMDSO plasma polymerisation followed by SF(6) plasma treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...