Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 903060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800348

RESUMO

Environmental cues synchronize endogenous rhythms of many physiological processes such as hormone synthesis and secretion. Little is known about the diurnal pattern of hormones and gene expression of the Callinectes sapidus molt cycle. We aimed to investigate in the eyestalk and hepatopancreas of premolt and intermolt C. sapidus the following parameters: 1) the diurnal expression of the ecdysteroid receptor CasEcR isoforms, and the molt inhibiting hormone CasMIH; 2) the diurnal hemolymph ecdysteroid and melatonin levels; and 3) melatonin effects on the transcripts of the above-mentioned genes in intermolt C. sapidus. Ecdysteroid levels were higher in the premolt than the intermolt animals at all time points evaluated (ZTs). Premolt crabs displayed a variation of ecdysteroid concentration between time points, with a reduction at ZT17. No difference in the melatonin level was seen in either molt stage or between stages. In the eyestalk of intermolt animals, CasEcR expression oscillated, with a peak at ZT9, and premolt crabs have a reduction at ZT9; CasMIH transcripts did not vary along 24 h in either molt stage. Moreover, the evaluated eyestalk genes were more expressed at ZT9 in the intermolt than the premolt crabs. In the hepatopancreas, CasEcR expression showed a peak at ZT9 in premolt crabs. Exogenous melatonin (10-7 mol/animal) reduced the expression of both genes in the eyestalk at ZT17. In the hepatopancreas, melatonin markedly increased the expression of the CasEcR gene at ZT9. Taken altogether, our results are pioneer in demonstrating the daily oscillation of gene expression associated to molt cycle stages, as well as the daily ecdysteroid and melatonin levels and the remarkable influence of melatonin on the molt cycle of C. sapidus.

2.
Environ Monit Assess ; 194(6): 425, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35552876

RESUMO

We evaluated the environmental quality in mangrove areas of the Western Atlantic with different levels and history of contamination, considering biomarkers for the crab Ucides cordatus. For this purpose, specimens were collected in two climatic seasons (rainy and dry seasons) and assays of genotoxicity (MN, micronucleus), cytotoxicity (NRRT, neutral red retention time) and biochemical (MT, metallothionein; and LPO, lipoperoxidation) were conducted. In the most impacted mangroves, there was an increase in the mean of micronucleus (frequency of MN/1000), which was associated with a shorter retention time (minutes of NRRT). In contrast, the most pristine areas showed MN < 3 and NRRT < 100 min, with no seasonal effect, indicating a lower effect of degenerative processes by xenobiotics. The rainy season was more harmful, especially regarding cytogenotoxicity. The use of bioindicator species for environmental monitoring should be guided by an analysis of biomarkers considering the season, because during the period of highest rainfall, biomarkers values can change.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Biomarcadores/análise , Braquiúros/fisiologia , Monitoramento Ambiental , Estações do Ano , Espécies Sentinelas , Poluentes Químicos da Água/análise
3.
Environ Sci Pollut Res Int ; 25(35): 35672-35681, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30357663

RESUMO

The field of nanotechnology had enormous developments, resulting in new methods for the controlled synthesis of a wide variety of nanoscale materials with unique properties. Efficient methods such as thermal decomposition for efficient size control have been developed in recent years for the synthesis of oleic acid (OA)-coated magnetite (Fe3O4) nanoparticles (MNP-OA). These nanostructures can be a source of pollution when emitted in the aquatic environment and could be accumulated by vulnerable marine species such as crustaceans. In this work, we synthesized and characterized MNP-OA of three different diameters (5, 8, and 12 nm) by thermal decomposition. These nanoparticles were remarkably stable after treatment with high affinity iron chelators (calcein, fluorescent desferrioxamine, and fluorescent apotransferrin); however, they displayed pro-oxidant activity after being challenged with ascorbate under two physiological buffers. Free or nanoparticle iron displayed low toxicity to four types of hepatopancreatic cells (E, R, F, and B) of the mangrove crab Ucides cordatus; however, they were promptly bioavailable, posing the risk of ecosystem disruption due to the release of excess nutrients.


Assuntos
Braquiúros/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Nanopartículas de Magnetita , Ácido Oleico/farmacocinética , Animais , Disponibilidade Biológica , Braquiúros/fisiologia , Desferroxamina/metabolismo , Ecossistema , Ecotoxicologia , Fluoresceínas/química , Hepatopâncreas/citologia , Ferro/análise , Ferro/metabolismo , Quelantes de Ferro/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Masculino , Ácido Oleico/química , Tamanho da Partícula , Polissorbatos/química , Transferrina/metabolismo , Áreas Alagadas
4.
Environ Sci Pollut Res Int ; 25(16): 15962-15970, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29589242

RESUMO

The mangrove crab Ucides cordatus is a bioindicator of aquatic contamination. In this work, the iron availability and redox activity of saccharide-coated mineral iron supplements (for both human and veterinary use) and ferrocene derivatives in Saline Ucides Buffer (SUB) medium were assessed. The transport of these metallodrugs by four different hepatopancreatic cell types (embryonic (E), resorptive (R), fibrillar (F), and blister (B)) of U. cordatus were measured. Organic coated iron minerals (iron supplements) were stable against strong chelators (calcein and transferrin). Ascorbic acid efficiently mediated the release of iron only from ferrocene compounds, leading to redox-active species. Ferrous iron and iron supplements were efficient in loading iron to all hepatopancreatic cell types. In contrast, ferrocene derivatives were loaded only in F and B cell types. Acute exposition to the iron compounds resulted in cell viability of 70-95%, and to intracellular iron levels as high as 0.40 µmol L-1 depending upon the compound and the cell line. The easiness that iron from iron metallodrugs was loaded/transported into U. cordatus hepatopancreatic cells reinforces a cautionary approach to the widespread disposal and use of highly bioavailable iron species as far as the long-term environmental welfare is concerned.


Assuntos
Braquiúros/metabolismo , Compostos Ferrosos/metabolismo , Hepatopâncreas/citologia , Ferro/metabolismo , Metalocenos/metabolismo , Poluentes Químicos da Água/análise , Animais , Braquiúros/química , Braquiúros/efeitos dos fármacos , Braquiúros/fisiologia , Compostos Ferrosos/análise , Compostos Ferrosos/química , Hepatopâncreas/efeitos dos fármacos , Humanos , Ferro/análise , Metalocenos/análise , Metalocenos/química
5.
PLoS One ; 10(4): e0121997, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25849743

RESUMO

Iron metallodrugs comprise mineral supplements, anti-hypertensive agents and, more recently, magnetic nanomaterials, with both therapeutic and diagnostic roles. As biologically-active metal compounds, concern has been raised regarding the impact of these compounds when emitted to the environment and associated ecotoxicological effects for the fauna. In this work we assessed the relative stability of several iron compounds (supplements based on glucoheptonate, dextran or glycinate, as well as 3,5,5-trimethylhexanoyl (TMH) derivatives of ferrocene) against high affinity models of biological binding, calcein and aprotransferrin, via a fluorimetric method. Also, the redox-activity of each compound was determined in a physiologically relevant medium. Toxicity toward Artemia salina at different developmental stages was measured, as well as the amount of lipid peroxidation. Our results show that polymer-coated iron metallodrugs are stable, non-redox-active and non-toxic at the concentrations studied (up to 300 µM). However, TMH derivatives of ferrocene were less stable and more redox-active than the parent compound, and TMH-ferrocene displayed toxicity and lipid peroxidation to A. salina, unlike the other compounds. Our results indicate that iron metallodrugs based on polymer coating do not present direct toxicity at low levels of emission; however other iron species (eg. metallocenes), may be deleterious for aquatic organisms. We suggest that ecotoxicity depends more on metal speciation than on the total amount of metal present in the metallodrugs. Future studies with discarded metallodrugs should consider the chemical speciation of the metal present in the composition of the drug.


Assuntos
Artemia/metabolismo , Ferro/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Oxirredução/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 81: 114-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22621724

RESUMO

The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various metals.


Assuntos
Braquiúros/metabolismo , Metais/metabolismo , Rhizophoraceae/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Brasil , Dieta , Monitoramento Ambiental , Brânquias/metabolismo , Hepatopâncreas/metabolismo , Folhas de Planta/metabolismo
7.
Physiol Biochem Zool ; 79(2): 357-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16555194

RESUMO

The subject of ion regulation in invertebrates is discussed, using a variety of invertebrate model species and approaches that range from the whole-organism level to tissue, subcellular, and molecular levels to illustrate the future direction of the field. These organisms inhabit a variety of aquatic, freshwater, and terrestrial environments, showing specific adaptations to each environment. This overview discusses mechanisms of metal detoxification and the presence of Cl-ATPase in marine organisms to avoid excess intracellular Cl(-); Ca(2+) regulation and endocrine aspects of adaptations to transitional (semiterrestrial) environments; adaptations to Ca(2+)-poor freshwater, particularly the reabsorption of Ca(2+) through specific transporters found in the urine; and finally, ionoregulatory mechanisms for life on land, such as Ca(2+) conservation during molting in isopods and the presence of K(+) channels in insect Malpighian tubules. Convergent mechanisms for dealing with similar problems in dissimilar habitats are discussed, taking into consideration that invertebrates will continue to serve as model systems for the evolution of ionoregulation in different habitats.


Assuntos
Invertebrados/metabolismo , Íons/metabolismo , Adaptação Fisiológica , Animais , Ecossistema , Transporte de Íons/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...