Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Res ; 43(1): 55-63, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29035138

RESUMO

AIM: Nicotinamide N-methyltransferase (NNMT) is a novel regulator of energy homeostasis in adipose tissue. NNMT expression is higher in obese mice than in lean mice, and NNMT knockdown prevents diet-induced obesity. Little is known about the regulation of enzyme activity during the development of obesity. The aim of this study was to analyze NNMT activity in tissues of mice with incipient and established obesity. METHODS: A fluorescence-based, sensitive, low-volume, high-throughput method was developed to assay NNMT activity. C57BL/6 mice were fed a high-fat diet for 4 weeks (incipient obesity) and for 12 weeks (established obesity). Tissues and serum were harvested and analyzed. RESULTS: NNMT activity was highest in subcutaneous white fat (55.0 µU/mg), followed by epididymal white fat (35.6 µU/mg), brown adipose tissue (7.8 µU/mg), liver (7.6 µU/mg), and lung (7.3 µU/mg). Little activity was detected in heart, skeletal muscle, and kidney. No activity was found in serum samples. Body weight predicted NNMT activity in white fat, but not in brown fat or any other tissue, and only in incipient obesity. With established obesity, this association was lost. CONCLUSIONS: As obesity develops, body weight predicts NNMT activity in white adipose tissue, but not in any other tissue, consistent with a specific role of adipose-tissue NNMT in the regulation of body weight.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Peso Corporal , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/metabolismo , Animais , Modelos Animais de Doenças , Epididimo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Adipocyte ; 5(4): 351-358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994948

RESUMO

Adipocyte cell culture is an important tool for mechanistic studies of energy metabolism. Many factors affect the differentiation of adipocytes in culture. Oil red O staining can be used to assess the degree of differentiation. However, the validity of this method for quantitative analysis has not yet been established. Here we show that a protocol with arbitrarily chosen parameters does not measure in the linear range and is not suitable for quantitative analysis (R2 = 0.077, p = 0.382), and develop and validate an optimized protocol for quantitative oil red O staining of cultured adipocytes. 3T3-L1 preadipocytes and adipocytes are fixed with 4% formaldehyde and stained with 0.2% oil red O solution in 40% 2-propanol for 30 minutes. Dye is eluted with 2-propanol, and absorption of the eluate is measured photometrically at 510 nm. This optimized protocol achieves excellent correlation between defined amounts of differentiated adipocytes on constant-size culture plates and photometric absorption (R2 = 0.972, p = 6.585E-14). The performance of the method is independent of the culture plates used. Thus, the optimized oil red O staining protocol can be universally employed to quantitatively assess adipocyte differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...