Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3610, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330565

RESUMO

This report describes a 3D microelectrode array integrated on a thin-film flexible cable for neural recording in small animals. The fabrication process combines traditional silicon thin-film processing techniques and direct laser writing of 3D structures at micron resolution via two-photon lithography. Direct laser-writing of 3D-printed electrodes has been described before, but this report is the first to provide a method for producing high-aspect-ratio structures. One prototype, a 16-channel array with 300 µm pitch, demonstrates successful electrophysiological signal capture from bird and mouse brains. Additional devices include 90 µm pitch arrays, biomimetic mosquito needles that penetrate through the dura of birds, and porous electrodes with enhanced surface area. The rapid 3D printing and wafer-scale methods described here will enable efficient device fabrication and new studies examining the relationship between electrode geometry and electrode performance. Applications include small animal models, nerve interfaces, retinal implants, and other devices requiring compact, high-density 3D electrodes.


Assuntos
Sistema Nervoso , Redação , Camundongos , Animais , Eletrodos , Microeletrodos , Eletrodos Implantados
2.
J Chem Phys ; 157(7): 074703, 2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35987573

RESUMO

Many techniques to fabricate complex nanostructures and quantum emitting defects in low dimensional materials for quantum information technologies rely on the patterning capabilities of focused ion beam (FIB) systems. In particular, the ability to pattern arrays of bright and stable room temperature single-photon emitters (SPEs) in 2D wide-bandgap insulator hexagonal boron nitride (hBN) via high-energy heavy-ion FIB allows for direct placement of SPEs without structured substrates or polymer-reliant lithography steps. However, the process parameters needed to create hBN SPEs with this technique are dependent on the growth method of the material chosen. Moreover, morphological damage induced by high-energy heavy-ion exposure may further influence the successful creation of SPEs. In this work, we perform atomic force microscopy to characterize the surface morphology of hBN regions patterned by Ga+ FIB to create SPEs at a range of ion doses and find that material swelling, and not milling as expected, is most strongly and positively correlated with the onset of non-zero SPE yields. Furthermore, we simulate vacancy concentration profiles at each of the tested doses and propose a qualitative model to elucidate how Ga+ FIB patterning creates isolated SPEs that is consistent with observed optical and morphological characteristics and is dependent on the consideration of void nucleation and growth from vacancy clusters. Our results provide novel insight into the formation of hBN SPEs created by high-energy heavy-ion milling that can be leveraged for monolithic hBN photonic devices and could be applied to a wide range of low-dimensional solid-state SPE hosts.

3.
Micromachines (Basel) ; 11(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481670

RESUMO

Retinal implant devices are becoming an increasingly realizable way to improve the vision of patients blinded by photoreceptor degeneration. As an electrode material that can improve restored visual acuity, carbon nanotubes (CNTs) excel due to their nanoscale topography, flexibility, surface chemistry, and double-layer capacitance. If vertically aligned carbon nanotubes (VACNTs) are biocompatible with retinal neurons and mechanically robust, they can further improve visual acuity-most notably in subretinal implants-because they can be patterned into high-aspect-ratio, micrometer-size electrodes. We investigated the role of an aluminum (Al) underlayer beneath an iron (Fe) catalyst layer used in the growth of VACNTs by chemical vapor deposition (CVD). In particular, we cultured dissociated retinal cells for three days in vitro (DIV) on unfunctionalized and oxygen plasma functionalized VACNTs grown from a Fe catalyst (Fe and Fe + Pl preparations, where Pl signifies the plasma functionalization) and an Fe catalyst with an Al underlayer (Al/Fe and Al/Fe + Pl preparations). The addition of the Al layer increased the mechanical integrity of the VACNT interface and enhanced retinal neurite outgrowth over the Fe preparation. Unexpectedly, the extent of neurite outgrowth was significantly greater in the Al/Fe than in the Al/Fe+Pl preparation, suggesting plasma functionalization can negatively impact biocompatibility for some VACNT preparations. Additionally, we show our VACNT growth process for the Al/Fe preparation can support neurite outgrowth for up to 7 DIV. By demonstrating the retinal neuron biocompatibility, mechanical integrity, and pattern control of our VACNTs, this work offers VACNT electrodes as a solution for improving the restored visual acuity provided by modern retinal implants.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25353484

RESUMO

We present and analyze a model for the combination of bulk and surface electroclinic effects in the smectic-A* (Sm-A*) phase near a Sm-A*-Sm-C* transition. As part of our analysis we calculate the dependence of the surface tilt on external electric field and show that it can be eliminated, or even reversed from its zero-field value, as demonstrated in previous experimental work on a system (W415) with a continuous Sm-A*-Sm-C* transition. We also analyze, for the first time, the combination of bulk and surface electroclinic effects in systems with a first-order Sm-A*-Sm-C* transition. The variation of surface tilt with electric field in this case is much more dramatic, with discontinuities and hysteresis. With regard to technological, e.g., display, applications, this could be a feature to be avoided or potentially exploited. Near each type of Sm-A*-Sm-C* transition we obtain the temperature dependence of the field required to eliminate surface tilt. Additionally, we analyze the effect of varying the system's enantiomeric excess, showing that it strongly affects the field dependence of surface tilt, in particular, near a first-order Sm-A*-Sm-C* transition. In this case, increasing enantiomeric excess can change the field dependence of surface tilt from continuous to discontinuous. Our model also allows us to calculate the variation of layer spacing in going from surface to bulk, which in turn allows us to estimate the strain resulting from the difference between the surface and bulk layer spacing. We show that for certain ranges of applied electric field, this strain can result in layer buckling, which reduces the overall quality of the liquid crystal cell. For de Vries materials, with small tilt-induced change in layer spacing, the induced strain for a given surface tilt should be smaller. However, we argue that this may be offset by the fact that de Vries materials, which typically have Sm-A*-Sm-C* transitions near a tricritical point, will generally have larger surface tilt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...