Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(21)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34771705

RESUMO

Previous studies have suggested that statins can be repurposed for cancer treatment. However, the therapeutic efficacy of statins in chronic myeloid leukemia (CML) has not yet been demonstrated. In this study, we retrospectively evaluated the outcomes of 408 CML patients who underwent imatinib therapy. The deep molecular response rates in patients treated with the statin/TKI combination were significantly higher than those in patients treated with TKI alone (p = 0.0016). The statin/TKI combination exerted potent cytotoxic effects against wild-type and ABL1 mutant CML, BaF3, and K562/T315I mutant cells. Furthermore, the statin/TKI combination additively inhibited the colony-forming capacity of murine CML-KLS+ cells in vitro. In addition, we examined the additive growth-inhibitory effects of the statin/tyrosine kinase inhibitor (TKI) combination against CML patient-derived CD34+ cells. The growth-inhibitory effects of the statin/imatinib combination against CD34+/CML primary cells were higher than those against CD34+/Norm cells (p = 0.005), suggesting that the combination of rosuvastatin and imatinib exerted growth-inhibitory effects against CML CD34+ cells, but not against normal CD34+ cells. Furthermore, results from RNA sequencing of control and statin-treated cells suggested that statins inhibited c-Myc-mediated and hematopoietic cell differentiation pathways. Thus, statins can be potentially repurposed to improve treatment outcomes in CML patients when combined with TKI therapy.

2.
Cancer Cell ; 35(5): 721-737.e9, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31056398

RESUMO

The mitochondrial caseinolytic protease P (ClpP) plays a central role in mitochondrial protein quality control by degrading misfolded proteins. Using genetic and chemical approaches, we showed that hyperactivation of the protease selectively kills cancer cells, independently of p53 status, by selective degradation of its respiratory chain protein substrates and disrupts mitochondrial structure and function, while it does not affect non-malignant cells. We identified imipridones as potent activators of ClpP. Through biochemical studies and crystallography, we show that imipridones bind ClpP non-covalently and induce proteolysis by diverse structural changes. Imipridones are presently in clinical trials. Our findings suggest a general concept of inducing cancer cell lethality through activation of mitochondrial proteolysis.


Assuntos
Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Leucemia Mieloide Aguda/tratamento farmacológico , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Endopeptidase Clp/química , Feminino , Células HCT116 , Células HEK293 , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imidazóis , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Modelos Moleculares , Mutação Puntual , Conformação Proteica/efeitos dos fármacos , Proteólise , Piridinas , Pirimidinas , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...