Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(6): 1063-1073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802520

RESUMO

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.


Assuntos
Membrana Celular , Canais Iônicos , Mecanotransdução Celular , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia , Humanos , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Animais
2.
Small ; 17(15): e2004258, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33094918

RESUMO

Cardiotoxicity is one of the most serious side effects of cancer chemotherapy. Current approaches to monitoring of chemotherapy-induced cardiotoxicity (CIC) as well as model systems that develop in vivo or in vitro CIC platforms fail to notice early signs of CIC. Moreover, breast cancer (BC) patients with preexisting cardiac dysfunctions may lead to different incident levels of CIC. Here, a model is presented for investigating CIC where not only induced pluripotent stem cell (iPSC)-derived cardiac tissues are interacted with BC tissues on a dual-organ platform, but electrochemical immuno-aptasensors can also monitor cell-secreted multiple biomarkers. Fibrotic stages of iPSC-derived cardiac tissues are promoted with a supplement of transforming growth factor-ß 1 to assess the differential functionality in healthy and fibrotic cardiac tissues after treatment with doxorubicin (DOX). The production trend of biomarkers evaluated by using the immuno-aptasensors well-matches the outcomes from conventional enzyme-linked immunosorbent assay, demonstrating the accuracy of the authors' sensing platform with much higher sensitivity and lower detection limits for early monitoring of CIC and BC progression. Furthermore, the versatility of this platform is demonstrated by applying a nanoparticle-based DOX-delivery system. The proposed platform would potentially help allow early detection and prediction of CIC in individual patients in the future.


Assuntos
Neoplasias da Mama , Cardiotoxicidade , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Feminino , Coração , Humanos , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos
3.
Sci Rep ; 9(1): 17575, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772250

RESUMO

By applying a slow curing process, we show that biomolecules can be incorporated via a simple process as liquid stable phases inside a polydimethylsiloxane (PDMS) matrix. The process is carried out under mild conditions with regards to temperature, pH and relative humidity, and is thus suitable for application to biological entities. Fluorescence and enzymatic activity measurements show that the biochemical properties of the proteins and enzyme tested are preserved, without loss due to adsorption at the liquid-polymer interface. Protected from external stimuli by the PDMS matrix, these soft liquid composite materials are new tools of interest for robotics, microfluidics, diagnostics and chemical microreactors.

4.
Biomicrofluidics ; 11(4): 044109, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28852429

RESUMO

To develop biomimetic three-dimensional (3D) tissue constructs for drug screening and biological studies, engineered blood vessels should be integrated into the constructs to mimic the drug administration process in vivo. The development of perfusable vascularized 3D tissue constructs for studying the drug administration process through an engineered endothelial layer remains an area of intensive research. Here, we report the development of a simple 3D vascularized liver tissue model to study drug toxicity through the incorporation of an engineered endothelial layer. Using a sacrificial bioprinting technique, a hollow microchannel was successfully fabricated in the 3D liver tissue construct created with HepG2/C3A cells encapsulated in a gelatin methacryloyl hydrogel. After seeding human umbilical vein endothelial cells (HUVECs) into the microchannel, we obtained a vascularized tissue construct containing a uniformly coated HUVEC layer within the hollow microchannel. The inclusion of the HUVEC layer into the scaffold resulted in delayed permeability of biomolecules into the 3D liver construct. In addition, the vascularized construct containing the HUVEC layer showed an increased viability of the HepG2/C3A cells within the 3D scaffold compared to that of the 3D liver constructs without the HUVEC layer, demonstrating a protective role of the introduced endothelial cell layer. The 3D vascularized liver model presented in this study is anticipated to provide a better and more accurate in vitro liver model system for future drug toxicity testing.

5.
ACS Appl Mater Interfaces ; 8(31): 20432-9, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27429157

RESUMO

Functional nanoparticles are valuable materials for energy production, bioelectronics, and diagnostic devices. The combination of biomolecules with nanosized material produces a new hybrid material with properties that can exceed the ones of the single components. Hematite is a widely available material that has found application in various sectors such as in sensing and solar energy production. We report a single-step immobilization process based on affinity and achieved by genetically engineering the protein of interest to carry a hematite-binding peptide. Fabricated hematite nanoparticles were then investigated for the immobilization of the two biomolecules C-phycocyanin (CPC) and laccase from Bacillus pumilus (LACC) under mild conditions. Genetic engineering of biomolecules with a hematite-affinity peptide led to a higher extent of protein immobilization and enhanced the catalytic activity of the enzyme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...