Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 29(2): 743-750, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197740

RESUMO

Toxicity induced by heavy metals deteriorates soil fertility status. It also adversely affects the growth and yield of crops. These heavy metals become part of the food chain when crops are cultivated in areas where heavy metals are beyond threshold limits. Cadmium (Cd) and nickel (Ni) are considered the most notorious ones among different heavy metals. The high water solubility of Cd made it a potential toxin for plants and their consumers. Accumulation of Ni in plants, leaves, and fruits also deteriorates their quality and causes cancer in humans when such a Ni-contaminated diet is used regularly. Both Cd and Ni also compete with essential nutrients of plants, making the fertility status of soil poor. To overcome this problem, the use of activated carbon biochar can play a milestone role. In the recent past application of activated carbon biochar is gaining more and more attention. Biochar sorb the Cd and Ni and releases essential micronutrients that are part of its structure. Many micropores and high cation exchange capacity make it the most acceptable organic amendment to improve soil fertility and immobilize Cd and Ni. In addition to improving water and nutrients, soil better microbial proliferation enhances the soil rhizosphere ecosystem and nutrient cycling. This review has covered Cd and Ni harmful effects on crop yield and their immobilization by activated carbon biochar. The focus was made to elaborate on the positive effects of biochar on crop yield and soil health.

2.
PLoS One ; 16(6): e0253390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191839

RESUMO

Fourier transform infrared spectroscopy (FTIR) spectroscopy detects functional groups such as vibrational bands like N-H, O-H, C-H, C = O (ester, amine, ketone, aldehyde), C = C, C = N (vibrational modes of a tetrapyrrole ring) and simply C = N. The FTIR of these bands is fundamental to the investigation of the effect of biochar (BC) treatment on structural changes in the chlorophyll molecules of both plants that were tested. For this, dried leaf of Spinacia oleracia (spinach) and Trigonella corniculata (fenugreek) were selected for FTIR spectral study of chlorophyll associated functional groups. The study's primary goal was to investigate the silent features of infrared (IR) spectra of dried leave samples. The data obtained from the current study also shows that leaf chlorophyll can mask or suppress other molecules' FITR bands, including proteins. In addition, the C = O bands with Mg and the C9 ketonic group of chlorophyll are observed as peaks at1600 (0%BC), 1650 (3%BC) and 1640, or near to1700 (5%BC) in spinach samples. In fenugreek, additional effects are observed in the FTIR spectra of chlorophyll at the major groups of C = C, C = O and C9 of the ketonic groups, and the vibrational bands are more evident at C-H and N-H of the tetrapyrrole ring. It is concluded that C-N bands are more visible in 5% BC treated spinach and fenugreek than in all other treatments. These types of spectra are useful in detecting changes or visibility of functional groups, which are very helpful in supporting biochemical data such as an increase in protein can be detected by more visibility of C-N bands in FTIR spectra.


Assuntos
Carvão Vegetal/química , Clorofila/análise , Poluição Ambiental/prevenção & controle , Spinacia oleracea/química , Trigonella/química , Absorção Fisico-Química , Clorofila/química , Clorofila/metabolismo , Poluição Ambiental/efeitos adversos , Metais Pesados/química , Estrutura Molecular , Folhas de Planta/química , Solo/química , Poluentes do Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vibração
3.
Sci Rep ; 10(1): 20361, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230222

RESUMO

Accumulation of stress ethylene in plants due to osmotic stress is a major challenge for the achievement of optimum sweet corn crop yield with limited availability of irrigation water. A significant increase in earth's temperature is also making the conditions more crucial regarding the availability of ample quantity of irrigation water for crops production. Plant growth promoting rhizobacteria (PGPR) can play an imperative role in this regard. Inoculation of rhizobacteria can provide resistance and adaptability to crops against osmotic stress. In addition, these rhizobacteria also have potential to solve future food security issues. That's why the current study was planned to examine the efficacious functioning of Pseudomonas fluorescens strains on yields and physiological characteristics of sweet corn (Zea mays L. var saccharata) under different levels of irrigation. Three irrigation levels i.e., 100% (I100 no stress), 80% (I80), and 60% (I60) were used during sweet corn cultivation. However, there were four rhizobacteria strains i.e., P. fluorescens P1, P. fluorescens P3, P. fluorescens P8, P. fluorescens P14 which were used in the experiment. The results showed that severe water stress (60% of plant water requirement) decreased chlorophyll a, chlorophyll b, and total chlorophyll contents, Fv/Fm ratio and nutrients uptake. A significant increase in F0, Fm, proline, total soluble sugars, catalase (CAT) and peroxidase (POX) activity led to less ear yield and canned seed yield. Combination of four strains significantly increased the yield traits of sweet corn i.e., ear and (44%) and canned seed yield (27%) over control. The highest promoting effect was observed in the combination of four strains treatment and followed by P1 strain in reducing the harmful effects of drought stress and improving sweet corn productivity. However, P14 gave minimum improvement in growth and yield indices under limited availability of water. In conclusion, combination of four strains inoculation is an efficacious approach for the achievement of better yield of sweet corn under osmotic stress.


Assuntos
Proteínas de Bactérias/biossíntese , Carbono-Carbono Liases/biossíntese , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas fluorescens/enzimologia , Zea mays/microbiologia , Irrigação Agrícola , Proteínas de Bactérias/genética , Biomassa , Carbono-Carbono Liases/genética , Catalase/biossíntese , Clorofila/biossíntese , Clorofila A/biossíntese , Produção Agrícola/métodos , Produtos Agrícolas , Secas , Peroxidase/biossíntese , Prolina/metabolismo , Pseudomonas fluorescens/genética , Rizosfera , Estresse Fisiológico , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
4.
Plants (Basel) ; 9(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086633

RESUMO

Management of inorganic fertilizer is very important to obtain maximum crop yield and improved nutrient use efficiency in cereal crops. Fixation of phosphatic fertilizers in alkaline soils due to calcareousness is one of the major hurdles. It induces phosphorus nutritional stress that can decrease the yield of maize and wheat. Selection of a suitable application method and proper stage of crop for phosphorus (P) fertilizer has prime importance in better uptake of P and crop production. Among different application methods, soil and foliar application are widely adopted. In wheat and maize, knee height + tasseling and stem elongation + booting are critical stages towards P deficiency. That is why field trials were conducted to evaluate the supplemental effect of foliar P on maize and wheat yields. For that, 144 mM KH2PO4 was applied as foliar at knee height + tasseling and stem elongation + boot stages in maize and wheat, respectively. Soil application of 0, 20, 40 and 60 kg P ha-1 was done through broadcast and band methods. Results showed that foliar spray of 144 mM KH2PO4 at knee height + tasseling and stem elongation + boot stages in wheat and maize significantly enhanced grains yield and phosphorus use efficiency (PUE) where P was applied as banding or broadcast at the time of sowing. A significant decreasing trend in response to increasing soil P levels validated the efficacious role and suitability of foliar P. In conclusion, the use of P as foliar at knee height + tasseling and stem elongation + boot stages is an efficacious way to manage P fertilizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...