Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 36(5): 1627-1628, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609421

RESUMO

MOTIVATION: Sequence repositories have few well-annotated virus mature peptide sequences. Therefore post-translational proteolytic processing of polyproteins into mature peptides (MPs) has been performed in silico, with a new computational method, for over 200 species in 5 pathogenic virus families (Caliciviridae, Coronaviridae, Flaviviridae, Picornaviridae and Togaviridae). RESULTS: Using pairwise alignment with reference sequences, MPs have been annotated and their sequences made available for search, analysis and download. At publication the method had produced 156 216 sequences, a large portion of the protein sequences now available in https://www.viprbrc.org. It represents a new and comprehensive mature peptide collection. AVAILABILITY AND IMPLEMENTATION: The data are available at the Virus Pathogen Resource https://www.viprbrc.org, and the software at https://github.com/VirusBRC/vipr_mat_peptide.


Assuntos
Poliproteínas , Vírus , Sequência de Aminoácidos , Peptídeos , Software
2.
Nucleic Acids Res ; 45(D1): D466-D474, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27679478

RESUMO

The Influenza Research Database (IRD) is a U.S. National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Bioinformatics Resource Center dedicated to providing bioinformatics support for influenza virus research. IRD facilitates the research and development of vaccines, diagnostics and therapeutics against influenza virus by providing a comprehensive collection of influenza-related data integrated from various sources, a growing suite of analysis and visualization tools for data mining and hypothesis generation, personal workbench spaces for data storage and sharing, and active user community support. Here, we describe the recent improvements in IRD including the use of cloud and high performance computing resources, analysis and visualization of user-provided sequence data with associated metadata, predictions of novel variant proteins, annotations of phenotype-associated sequence markers and their predicted phenotypic effects, hemagglutinin (HA) clade classifications, an automated tool for HA subtype numbering conversion, linkouts to disease event data and the addition of host factor and antiviral drug components. All data and tools are freely available without restriction from the IRD website at https://www.fludb.org.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Vírus da Influenza A , Pesquisa , Software , Vírus da Influenza A/classificação , Vírus da Influenza A/fisiologia , Tipagem Molecular/métodos , Fenótipo , Filogenia , Proteínas Virais/genética , Virulência
3.
Viruses ; 4(11): 3209-26, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23202522

RESUMO

Several viruses within the Coronaviridae family have been categorized as either emerging or re-emerging human pathogens, with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) being the most well known. The NIAID-sponsored Virus Pathogen Database and Analysis Resource (ViPR, www.viprbrc.org) supports bioinformatics workflows for a broad range of human virus pathogens and other related viruses, including the entire Coronaviridae family. ViPR provides access to sequence records, gene and protein annotations, immune epitopes, 3D structures, host factor data, and other data types through an intuitive web-based search interface. Records returned from these queries can then be subjected to web-based analyses including: multiple sequence alignment, phylogenetic inference, sequence variation determination, BLAST comparison, and metadata-driven comparative genomics statistical analysis. Additional tools exist to display multiple sequence alignments, view phylogenetic trees, visualize 3D protein structures, transfer existing reference genome annotations to new genomes, and store or share results from any search or analysis within personal private 'Workbench' spaces for future access. All of the data and integrated analysis and visualization tools in ViPR are made available without charge as a service to the Coronaviridae research community to facilitate the research and development of diagnostics, prophylactics, vaccines and therapeutics against these human pathogens.


Assuntos
Coronavirus , Bases de Dados Factuais , Software , Biologia Computacional/métodos , Humanos , Internet , National Institute of Allergy and Infectious Diseases (U.S.) , Pesquisa , Ferramenta de Busca , Estados Unidos , Interface Usuário-Computador
4.
Influenza Other Respir Viruses ; 6(6): 404-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22260278

RESUMO

BACKGROUND: The recent emergence of the 2009 pandemic influenza A/H1N1 virus has highlighted the value of free and open access to influenza virus genome sequence data integrated with information about other important virus characteristics. DESIGN: The Influenza Research Database (IRD, http://www.fludb.org) is a free, open, publicly-accessible resource funded by the U.S. National Institute of Allergy and Infectious Diseases through the Bioinformatics Resource Centers program. IRD provides a comprehensive, integrated database and analysis resource for influenza sequence, surveillance, and research data, including user-friendly interfaces for data retrieval, visualization and comparative genomics analysis, together with personal log in-protected 'workbench' spaces for saving data sets and analysis results. IRD integrates genomic, proteomic, immune epitope, and surveillance data from a variety of sources, including public databases, computational algorithms, external research groups, and the scientific literature. RESULTS: To demonstrate the utility of the data and analysis tools available in IRD, two scientific use cases are presented. A comparison of hemagglutinin sequence conservation and epitope coverage information revealed highly conserved protein regions that can be recognized by the human adaptive immune system as possible targets for inducing cross-protective immunity. Phylogenetic and geospatial analysis of sequences from wild bird surveillance samples revealed a possible evolutionary connection between influenza virus from Delaware Bay shorebirds and Alberta ducks. CONCLUSIONS: The IRD provides a wealth of integrated data and information about influenza virus to support research of the genetic determinants dictating virus pathogenicity, host range restriction and transmission, and to facilitate development of vaccines, diagnostics, and therapeutics.


Assuntos
Bases de Dados de Ácidos Nucleicos , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Aves , Biologia Computacional/métodos , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estados Unidos
5.
Nucleic Acids Res ; 40(Database issue): D593-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006842

RESUMO

The Virus Pathogen Database and Analysis Resource (ViPR, www.ViPRbrc.org) is an integrated repository of data and analysis tools for multiple virus families, supported by the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers (BRC) program. ViPR contains information for human pathogenic viruses belonging to the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Flaviviridae, Filoviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Picornaviridae, Poxviridae, Reoviridae, Rhabdoviridae and Togaviridae families, with plans to support additional virus families in the future. ViPR captures various types of information, including sequence records, gene and protein annotations, 3D protein structures, immune epitope locations, clinical and surveillance metadata and novel data derived from comparative genomics analysis. Analytical and visualization tools for metadata-driven statistical sequence analysis, multiple sequence alignment, phylogenetic tree construction, BLAST comparison and sequence variation determination are also provided. Data filtering and analysis workflows can be combined and the results saved in personal 'Workbenches' for future use. ViPR tools and data are available without charge as a service to the virology research community to help facilitate the development of diagnostics, prophylactics and therapeutics for priority pathogens and other viruses.


Assuntos
Bases de Dados Genéticas , Vírus/genética , Biologia Computacional , Genes Virais , Filogenia , Alinhamento de Sequência , Análise de Sequência , Software , Proteínas Virais/química , Vírus/classificação
6.
Appl Environ Microbiol ; 75(19): 6110-23, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19666735

RESUMO

Chlorinated water is commonly used in industrial operations to wash and sanitize fresh-cut, minimally processed produce. Here we compared 42 human outbreak strains that represented nine distinct Escherichia coli O157:H7 genetic lineages (or clades) for their relative resistance to chlorine treatment. A quantitative measurement of resistance was made by comparing the extension of the lag phase during growth of each strain under exposure to sublethal concentrations of sodium hypochlorite in Luria-Bertani or brain heart infusion broth. Strains in clade 8 showed significantly (P < 0.05) higher resistance to chlorine than strains from other clades of E. coli O157:H7. To further explore how E. coli O157:H7 responds to oxidative stress at transcriptional levels, we analyzed the global gene expression profiles of two strains, TW14359 (clade 8; associated with the 2006 spinach outbreak) and Sakai (clade 1; associated with the 1996 radish sprout outbreak), under sodium hypochlorite or hydrogen peroxide treatment. We found over 380 genes were differentially expressed (more than twofold; P < 0.05) after exposure to low levels of chlorine or hydrogen peroxide. Significantly upregulated genes included several regulatory genes responsive to oxidative stress, genes encoding putative oxidoreductases, and genes associated with cysteine biosynthesis, iron-sulfur cluster assembly, and antibiotic resistance. Identification of E. coli O157:H7 strains with enhanced resistance to chlorine decontamination and analysis of their transcriptomic response to oxidative stress may improve our basic understanding of the survival strategy of this human enteric pathogen on fresh produce during minimal processing.


Assuntos
Escherichia coli O157/fisiologia , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Estresse Fisiológico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Perfilação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/farmacologia , Hipoclorito de Sódio/farmacologia
7.
BMC Bioinformatics ; 10: 177, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19515247

RESUMO

BACKGROUND: The Enteropathogen Resource Integration Center (ERIC; http://www.ericbrc.org) has a goal of providing bioinformatics support for the scientific community researching enteropathogenic bacteria such as Escherichia coli and Salmonella spp. Rapid and accurate identification of experimental conclusions from the scientific literature is critical to support research in this field. Natural Language Processing (NLP), and in particular Information Extraction (IE) technology, can be a significant aid to this process. DESCRIPTION: We have trained a powerful, state-of-the-art IE technology on a corpus of abstracts from the microbial literature in PubMed to automatically identify and categorize biologically relevant entities and predicative relations. These relations include: Genes/Gene Products and their Roles; Gene Mutations and the resulting Phenotypes; and Organisms and their associated Pathogenicity. Evaluations on blind datasets show an F-measure average of greater than 90% for entities (genes, operons, etc.) and over 70% for relations (gene/gene product to role, etc). This IE capability, combined with text indexing and relational database technologies, constitute the core of our recently deployed text mining application. CONCLUSION: Our Text Mining application is available online on the ERIC website (http://www.ericbrc.org/portal/eric/articles). The information retrieval interface displays a list of recently published enteropathogen literature abstracts, and also provides a search interface to execute custom queries by keyword, date range, etc. Upon selection, processed abstracts and the entities and relations extracted from them are retrieved from a relational database and marked up to highlight the entities and relations. The abstract also provides links from extracted genes and gene products to the ERIC Annotations database, thus providing access to comprehensive genomic annotations and adding value to both the text-mining and annotations systems.


Assuntos
Indexação e Redação de Resumos , Biologia Computacional/métodos , Enterobacteriaceae , Armazenamento e Recuperação da Informação , Processamento de Linguagem Natural , PubMed , Fenômenos Fisiológicos Bacterianos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Enterobacteriaceae/fisiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Internet , Salmonella/genética , Salmonella/patogenicidade , Salmonella/fisiologia , Interface Usuário-Computador
8.
Nucleic Acids Res ; 36(Database issue): D519-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17999997

RESUMO

ERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp., Salmonella spp., Yersinia enterocolitica and Yersinia pestis. More than 30 genomes have been completely sequenced, many more exist in draft form and additional projects are underway. These organisms are increasingly the focus of studies using high-throughput experimental technologies and computational approaches. This wealth of data provides unprecedented opportunities for understanding the workings of basic biological systems and discovery of novel targets for development of vaccines, diagnostics and therapeutics. ERIC brings information together from disparate sources and supports data comparison across different organisms, analysis of varying data types and visualization of analyses in human and computer-readable formats.


Assuntos
Bases de Dados Genéticas , Enterobacteriaceae/genética , Genoma Bacteriano , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Pesquisa Biomédica , Bioterrorismo , Biologia Computacional , Elementos de DNA Transponíveis , Infecções por Enterobacteriaceae/diagnóstico , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/terapia , Genômica , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Alinhamento de Sequência , Software , Integração de Sistemas
9.
Adv Exp Med Biol ; 603: 28-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966403

RESUMO

ERIC (Enteropathogen Resource Information Center) is one of the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers for Biodefense and Emerging/Re-emerging Infectious Disease. ERIC serves as a comprehensive information resource for five related pathogens: Yersinia enterocolitica, Yersinia pestis, diarrheagenic E. coli, Shigella spp., and Salmonella spp. ERIC integrates genomics, proteomics, biochemical and microbiological information to facilitate the interpretation and understanding of ERIC pathogens and select related non-pathogens for the advancement of diagnostics, therapeutics, and vaccines. ERIC (www.ericbrc.org) is evolving to provide state-of-the-art analysis tools and data types, such as genome sequencing, comparative genomics, genome polymorphisms, gene expression, proteomics, and pathways as well as expertly curated community genome annotation. Genome sequence and genome annotation data and a variety of analysis and tools for eight strains of Yersinia enterocolitica and Yersinia pestis pathogens (Yersinia pestis biovars Mediaevalis KIM, Mediaevalis 91001, Orientalis CO92, Orientalis IP275, Antiqua Angola, Antiqua Antiqua, Antiqua Nepal516, and Yersinia enterocolitica 8081) and two strains of Yersinia pseudotuberculosis (Yersinia pseudotuberculosis IP32953 and IP31758) are currently available through the ERIC portal. ERIC seeks to maintain a strong collaboration with the scientific community so that we can continue to identify and incorporate the latest research data, tools, and training to best meet the current and future needs of the enteropathogen research community. All tools and data developed under this NIAID contract will be freely available. Please contact info@ericbrc.org for more information.


Assuntos
Bioterrorismo , Doenças Transmissíveis Emergentes/microbiologia , Biologia Computacional , Bases de Dados Factuais , Yersinia/patogenicidade , Genoma Bacteriano , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos , Yersinia/genética , Yersiniose/microbiologia , Yersinia pestis/genética , Yersinia pestis/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...