Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 9: 885610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937617

RESUMO

Throughout the last decade, many assistive robots for people with disabilities have been developed; however, researchers have not fully utilized these robotic technologies to entirely create independent living conditions for people with disabilities, particularly in relation to activities of daily living (ADLs). An assistive system can help satisfy the demands of regular ADLs for people with disabilities. With an increasing shortage of caregivers and a growing number of individuals with impairments and the elderly, assistive robots can help meet future healthcare demands. One of the critical aspects of designing these assistive devices is to improve functional independence while providing an excellent human-machine interface. People with limited upper limb function due to stroke, spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis, and other conditions find the controls of assistive devices such as power wheelchairs difficult to use. Thus, the objective of this research was to design a multimodal control method for robotic self-assistance that could assist individuals with disabilities in performing self-care tasks on a daily basis. In this research, a control framework for two interchangeable operating modes with a finger joystick and a chin joystick is developed where joysticks seamlessly control a wheelchair and a wheelchair-mounted robotic arm. Custom circuitry was developed to complete the control architecture. A user study was conducted to test the robotic system. Ten healthy individuals agreed to perform three tasks using both (chin and finger) joysticks for a total of six tasks with 10 repetitions each. The control method has been tested rigorously, maneuvering the robot at different velocities and under varying payload (1-3.5 lb) conditions. The absolute position accuracy was experimentally found to be approximately 5 mm. The round-trip delay we observed between the commands while controlling the xArm was 4 ms. Tests performed showed that the proposed control system allowed individuals to perform some ADLs such as picking up and placing items with a completion time of less than 1 min for each task and 100% success.

2.
JMIR Biomed Eng ; 7(1): e36734, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38875679

RESUMO

BACKGROUND: Applications of robotics in daily life are becoming essential by creating new possibilities in different fields, especially in the collaborative environment. The potentials of collaborative robots are tremendous as they can work in the same workspace as humans. A framework employing a top-notch technology for collaborative robots will surely be worthwhile for further research. OBJECTIVE: This study aims to present the development of a novel framework for the collaborative robot using mixed reality. METHODS: The framework uses Unity and Unity Hub as a cross-platform gaming engine and project management tool to design the mixed reality interface and digital twin. It also uses the Windows Mixed Reality platform to show digital materials on holographic display and the Azure mixed reality services to capture and expose digital information. Eventually, it uses a holographic device (HoloLens 2) to execute the mixed reality-based collaborative system. RESULTS: A thorough experiment was conducted to validate the novel framework for mixed reality-based control of a collaborative robot. This framework was successfully applied to implement a collaborative system using a 5-degree of freedom robot (xArm-5) in a mixed reality environment. The framework was stable and worked smoothly throughout the collaborative session. Due to the distributed nature of cloud applications, there is a negligible latency between giving a command and the execution of the physical collaborative robot. CONCLUSIONS: Opportunities for collaborative robots in telerehabilitation and teleoperation are vital as in any other field. The proposed framework was successfully applied in a collaborative session, and it can also be applied in other similar potential applications for robust and more promising performance.

3.
J Neuroeng Rehabil ; 18(1): 173, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922590

RESUMO

BACKGROUND: Building control architecture that balances the assistive manipulation systems with the benefits of direct human control is a crucial challenge of human-robot collaboration. It promises to help people with disabilities more efficiently control wheelchair and wheelchair-mounted robot arms to accomplish activities of daily living. METHODS: In this study, our research objective is to design an eye-tracking assistive robot control system capable of providing targeted engagement and motivating individuals with a disability to use the developed method for self-assistance activities of daily living. The graphical user interface is designed and integrated with the developed control architecture to achieve the goal. RESULTS: We evaluated the system by conducting a user study. Ten healthy participants performed five trials of three manipulation tasks using the graphical user interface and the developed control framework. The 100% success rate on task performance demonstrates the effectiveness of our system for individuals with motor impairments to control wheelchair and wheelchair-mounted assistive robotic manipulators. CONCLUSIONS: We demonstrated the usability of using this eye-gaze system to control a robotic arm mounted on a wheelchair in activities of daily living for people with disabilities. We found high levels of acceptance with higher ratings in the evaluation of the system with healthy participants.


Assuntos
Pessoas com Deficiência , Robótica , Tecnologia Assistiva , Cadeiras de Rodas , Atividades Cotidianas , Humanos , Interface Usuário-Computador
4.
Sci Rep ; 11(1): 21342, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725409

RESUMO

Community-wide lockdowns in response to COVID-19 influenced many families, but the developmental cascade for children with autism spectrum disorder (ASD) may be especially detrimental. Our objective was to evaluate behavioral patterns of risk and resilience for children with ASD across parent-report assessments before (from November 2019 to February 2020), during (March 2020 to May 2020), and after (June 2020 to November 2020) an extended COVID-19 lockdown. In 2020, our study Mobile-based care for children with ASD using remote experience sampling method (mCARE) was inactive data collection before COVID-19 emerged as a health crisis in Bangladesh. Here we deployed "Cohort Studies", where we had in total 300 children with ASD (150 test group and 150 control group) to collect behavioral data. Our data collection continued through an extended COVID-19 lockdown and captured parent reports of 30 different behavioral parameters (e.g., self-injurious behaviors, aggression, sleep problems, daily living skills, and communication) across 150 children with ASD (test group). Based on the children's condition, 4-6 behavioral parameters were assessed through the study. A total of 56,290 behavioral data points was collected (an average of 152.19 per week) from parent cell phones using the mCARE platform. Children and their families were exposed to an extended COVID-19 lockdown. The main outcomes used for this study were generated from parent reports child behaviors within the mCARE platform. Behaviors included of child social skills, communication use, problematic behaviors, sensory sensitivities, daily living, and play. COVID-19 lockdowns for children with autism and their families are not universally negative but supports in the areas of "Problematic Behavior" could serve to mitigate future risk.


Assuntos
Transtorno do Espectro Autista/psicologia , COVID-19/prevenção & controle , Uso do Telefone Celular , Comportamento Infantil/psicologia , Cuidado da Criança/métodos , Quarentena/psicologia , SARS-CoV-2 , Atividades Cotidianas , Agressão , Transtorno do Espectro Autista/epidemiologia , Bangladesh/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Criança , Pré-Escolar , Estudos de Coortes , Comunicação , Feminino , Humanos , Masculino , Comportamento Autodestrutivo/psicologia , Sono , Habilidades Sociais
5.
JMIR Med Inform ; 9(6): e29242, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33984830

RESUMO

BACKGROUND: Care for children with autism spectrum disorder (ASD) can be challenging for families and medical care systems. This is especially true in low- and- middle-income countries such as Bangladesh. To improve family-practitioner communication and developmental monitoring of children with ASD, mCARE (Mobile-Based Care for Children with Autism Spectrum Disorder Using Remote Experience Sampling Method) was developed. Within this study, mCARE was used to track child milestone achievement and family sociodemographic assets to inform mCARE feasibility/scalability and family asset-informed practitioner recommendations. OBJECTIVE: The objectives of this paper are threefold. First, it documents how mCARE can be used to monitor child milestone achievement. Second, it demonstrates how advanced machine learning models can inform our understanding of milestone achievement in children with ASD. Third, it describes family/child sociodemographic factors that are associated with earlier milestone achievement in children with ASD (across 5 machine learning models). METHODS: Using mCARE-collected data, this study assessed milestone achievement in 300 children with ASD from Bangladesh. In this study, we used 4 supervised machine learning algorithms (decision tree, logistic regression, K-nearest neighbor [KNN], and artificial neural network [ANN]) and 1 unsupervised machine learning algorithm (K-means clustering) to build models of milestone achievement based on family/child sociodemographic details. For analyses, the sample was randomly divided in half to train the machine learning models and then their accuracy was estimated based on the other half of the sample. Each model was specified for the following milestones: Brushes teeth, Asks to use the toilet, Urinates in the toilet or potty, and Buttons large buttons. RESULTS: This study aimed to find a suitable machine learning algorithm for milestone prediction/achievement for children with ASD using family/child sociodemographic characteristics. For Brushes teeth, the 3 supervised machine learning models met or exceeded an accuracy of 95% with logistic regression, KNN, and ANN as the most robust sociodemographic predictors. For Asks to use toilet, 84.00% accuracy was achieved with the KNN and ANN models. For these models, the family sociodemographic predictors of "family expenditure" and "parents' age" accounted for most of the model variability. The last 2 parameters, Urinates in toilet or potty and Buttons large buttons, had an accuracy of 91.00% and 76.00%, respectively, in ANN. Overall, the ANN had a higher accuracy (above ~80% on average) among the other algorithms for all the parameters. Across the models and milestones, "family expenditure," "family size/type," "living places," and "parent's age and occupation" were the most influential family/child sociodemographic factors. CONCLUSIONS: mCARE was successfully deployed in a low- and middle-income country (ie, Bangladesh), providing parents and care practitioners a mechanism to share detailed information on child milestones achievement. Using advanced modeling techniques this study demonstrates how family/child sociodemographic elements can inform child milestone achievement. Specifically, families with fewer sociodemographic resources reported later milestone attainment. Developmental science theories highlight how family/systems can directly influence child development and this study provides a clear link between family resources and child developmental progress. Clinical implications for this work could include supporting the larger family system to improve child milestone achievement.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33791439

RESUMO

In low- and middle-income countries, especially in Bangladesh, Autism Spectrum Disorder (ASD) may be considered an anathema, and social-cultural-financial constraints mean that there are few facilities available for treatment for ASD children. The revolution in the use of the mobile phone (~80%) by the majority of people in Bangladesh in recent years has created an opportunity to improve the overall scenario in the treatment or remote monitoring process for children with ASD. In this grant project, we planned and developed a mobile phone-based system to remotely monitor children with ASD and help their treatment process both at the caregiver and care practitioner ends. In developing mCARE, we utilized a Remote Experience Sampling Method to design, build, deploy, and study the impact of mobile based monitoring and treatment of children with ASD in Bangladesh. We developed a mobile application using the Experience Sampling Method (ESM). A caregiver routinely reported the behavioral and milestone parameters of their children with ASD. The care practitioners monitored the longitudinal data that helped them in decision-making in a particular patient's treatment process. The Value Sensitive Design (VSD) was used to make this mobile application more user friendly with consideration of the local economic, social, and cultural values in Bangladesh.

7.
JMIR Mhealth Uhealth ; 9(4): e16806, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830065

RESUMO

BACKGROUND: There is worldwide demand for an affordable hemoglobin measurement solution, which is a particularly urgent need in developing countries. The smartphone, which is the most penetrated device in both rich and resource-constrained areas, would be a suitable choice to build this solution. Consideration of a smartphone-based hemoglobin measurement tool is compelling because of the possibilities for an affordable, portable, and reliable point-of-care tool by leveraging the camera capacity, computing power, and lighting sources of the smartphone. However, several smartphone-based hemoglobin measurement techniques have encountered significant challenges with respect to data collection methods, sensor selection, signal analysis processes, and machine-learning algorithms. Therefore, a comprehensive analysis of invasive, minimally invasive, and noninvasive methods is required to recommend a hemoglobin measurement process using a smartphone device. OBJECTIVE: In this study, we analyzed existing invasive, minimally invasive, and noninvasive approaches for blood hemoglobin level measurement with the goal of recommending data collection techniques, signal extraction processes, feature calculation strategies, theoretical foundation, and machine-learning algorithms for developing a noninvasive hemoglobin level estimation point-of-care tool using a smartphone. METHODS: We explored research papers related to invasive, minimally invasive, and noninvasive hemoglobin level measurement processes. We investigated the challenges and opportunities of each technique. We compared the variation in data collection sites, biosignal processing techniques, theoretical foundations, photoplethysmogram (PPG) signal and features extraction process, machine-learning algorithms, and prediction models to calculate hemoglobin levels. This analysis was then used to recommend realistic approaches to build a smartphone-based point-of-care tool for hemoglobin measurement in a noninvasive manner. RESULTS: The fingertip area is one of the best data collection sites from the body, followed by the lower eye conjunctival area. Near-infrared (NIR) light-emitting diode (LED) light with wavelengths of 850 nm, 940 nm, and 1070 nm were identified as potential light sources to receive a hemoglobin response from living tissue. PPG signals from fingertip videos, captured under various light sources, can provide critical physiological clues. The features of PPG signals captured under 1070 nm and 850 nm NIR LED are considered to be the best signal combinations following a dual-wavelength theoretical foundation. For error metrics presentation, we recommend the mean absolute percentage error, mean squared error, correlation coefficient, and Bland-Altman plot. CONCLUSIONS: We addressed the challenges of developing an affordable, portable, and reliable point-of-care tool for hemoglobin measurement using a smartphone. Leveraging the smartphone's camera capacity, computing power, and lighting sources, we define specific recommendations for practical point-of-care solution development. We further provide recommendations to resolve several long-standing research questions, including how to capture a signal using a smartphone camera, select the best body site for signal collection, and overcome noise issues in the smartphone-captured signal. We also describe the process of extracting a signal's features after capturing the signal based on fundamental theory. The list of machine-learning algorithms provided will be useful for processing PPG features. These recommendations should be valuable for future investigators seeking to build a reliable and affordable hemoglobin prediction model using a smartphone.


Assuntos
Algoritmos , Smartphone , Hemoglobinas , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...