Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 14775, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285253

RESUMO

Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E. coli) cultured on solid agar medium (MH agar) are monitored through employing a microwave split-ring resonator. A one-port microwave resonator operating at a 1.76 GHz resonant frequency, featuring a 5 mm2 sensitive sensing region, was designed and optimized to perform this. Upon introducing uninhibited growth of the bacteria, the sensor measured 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hours. The amplitude change decreased to negligible values to signify inhibited growth of the bacteria at higher concentrations of antibiotics, such as a change of 0.005 dB in resonant amplitude variation while using 45 µg of antibiotic. Moreover, this sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to expand automation to the intricate AST workflow in clinical settings, while providing rapid, sensitive, and non-invasive detection capabilities.


Assuntos
Antibacterianos/farmacologia , Técnicas Biossensoriais/instrumentação , Meios de Cultura/farmacologia , Escherichia coli/crescimento & desenvolvimento , Técnicas Bacteriológicas/instrumentação , Meios de Cultura/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Campos Eletromagnéticos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Micro-Ondas
2.
J Hazard Mater ; 409: 124945, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33418298

RESUMO

Protective clothing must repel hazardous liquids such as oils, acids, and solvents, which often exhibit low surface tension. The low surface tension liquid repellency of textiles is currently characterized qualitatively, considering only the first thirty seconds of wetting. This study demonstrates that embedded sensors within protective fabrics can more fully characterize liquid repellency while simultaneously detecting the hazardous substance. The liquid repellency of oleophobic textiles was detected in-situ using differential planar microwave resonator structures. A differential split ring resonator was designed with resonant responses at 4.4 and 4.6 GHz with a sensitivity of 50 MHz per unit ε. Fabrics were rendered oleophobic by dip-coating. The liquid repellency was monitored in-situ using droplets of heptane, octane, decane, dodecane, and water. Wetting transitions and droplet evaporation were identified in real time. The 4.4 GHz resonance peak's shift was used to measure the liquid repellency, whereas the 4.6 GHz resonator monitored the liquid's vapor as it absorbed into a gas-sensitive elastomer. The microwave response was tracked over 10 h every 15 s, and this transient data could identify the liquids based on their wetting and evaporation rates. Such sensors could be readily embedded in oleophobic textiles and enhance personal protective equipment.

3.
IEEE Trans Biomed Circuits Syst ; 15(1): 122-132, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33513106

RESUMO

A real-time and label-free microstrip sensor capable of detecting and monitoring subsurface growth of Escherichia coli (E. coli) on solid growth media such as Luria-Bertani (LB) agar is presented. The microwave ring resonator was designed to operate at 1.76 GHz to detect variations in the dielectric properties such as permittivity and loss tangent to monitor bacterial growth. The sensor demonstrated high efficiency in monitoring subsurface dynamics of E. coli growth between two layers of LB agar. The resonant amplitude variations (Δ Amplitude (dB)) were recorded for different volumes of E. coli (3 µL and 9 µL) and compared to control without E. coli for 36 hours. The control showed a maximum amplitude variation of 0.037 dB, which was selected as a threshold to distinguish between the presence and absence of E. coli growth. The measured results by sensors were further supported by microscopic images. It is worth noticing that the amplitude variations fit well with the Gompertz growth model. The rate of amplitude change correlating bacteria growth rate was calculated as 0.08 and 0.13 dB/hr. for 3 µL and 9 µL of E. coli, respectively. This work is a proof of concept to demonstrate the capability of microwave sensors to detect and monitor subsurface bacterial growth.


Assuntos
Técnicas Biossensoriais , Micro-Ondas , Meios de Cultura , Escherichia coli
4.
IEEE Trans Biomed Circuits Syst ; 14(1): 2-11, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715571

RESUMO

Microwave resonator sensors are attractive for their contactless and label-free capability of monitoring bacterial growth in liquid media. This paper outlines a new label-free microwave biosensor based on a pair of planar split ring resonators for non-invasive monitoring of bacterial growth on a solid agar media. The sensor is comprised of two split ring resonators with slightly different resonant frequencies for differential operation. The transmission coefficient (S21) of the sensor is considered as the sensor's response with a designed and measured quality factor above 200 to ensure a high-resolution operation of the biosensor. Two resonant frequencies of 1.95 and 2.11 GHz represent the sensing signal and the reference signal, respectively. The developed sensor demonstrates high performance in monitoring the growth dynamics of Escherichia coli (E. coli) on Luria-Bertani (LB) agar with 4 mm thickness. The sensor's resonant amplitude response demonstrated 0.5 dB variation corresponding to the bacterial growth over 48 hours when bacteria were spread on LB agar starting with initial OD600 = 1.5. Moreover, 0.6 dB change in the sensor's response was observed over 96 hours of bacterial growth starting with an initial OD600 = 1.17 spotted on LB agar. The measured results fit well to the curves created using Richards' bacterial growth model, showing the strength of the sensor as a potential candidate for use in predictive food microbiology systems.


Assuntos
Técnicas Biossensoriais/instrumentação , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Carga Bacteriana , Desenho de Equipamento , Micro-Ondas
5.
Sci Rep ; 8(1): 15807, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361480

RESUMO

Infection diagnosis and antibiotic susceptibility testing (AST) are time-consuming and often laborious clinical practices. This paper presents a microwave-microfluidic biosensor for rapid, contactless and non-invasive device for testing the concentration and growth of Escherichia Coli (E. Coli) in medium solutions of different pH to increase the efficacy of clinical microbiology practices. The thin layer interface between the microfluidic channel and the microwave resonator significantly enhanced the detection sensitivity. The microfluidic chip, fabricated using standard soft lithography, was injected with bacterial samples and incorporated with a microwave microstrip ring resonator sensor with an operation frequency of 2.5 GHz and initial quality factor of 83 for detecting the concentration and growth of bacteria. The resonator had a coupling gap area on of 1.5 × 1.5 mm2 as of its sensitive region. The presence of different concentrations of bacteria in different pH solutions were detected via screening the changes in resonant amplitude and frequency responses of the microwave system. The sensor device demonstrated near immediate response to changes in the concentration of bacteria and maximum sensitivity of 3.4 MHz compared to a logarithm value of bacteria concentration. The minimum prepared optical transparency of bacteria was tested at an OD600 value of 0.003. The sensor's resonant frequency and amplitude parameters were utilized to monitor bacteria growth during a 500-minute time frame, which demonstrated a stable response with respect to detecting the bacterial proliferation. A highly linear response was demonstrated for detecting bacteria concentration at various pH values. The growth of bacteria analyzed over the resonator showed an exponential growth curve with respect to time and concurred with the lag-log-stationary-death model of cell growth. This biosensor is one step forward to automate the complex AST workflow of clinical microbiology laboratories for rapid and automated detection of bacteria as well as screening the bacteria proliferation in response to antibiotics.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/crescimento & desenvolvimento , Microfluídica/métodos , Micro-Ondas , Campos Eletromagnéticos
6.
Sci Rep ; 8(1): 139, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317767

RESUMO

A novel flow sensor is presented to measure the flow rate within microchannels in a real-time, noncontact and nonintrusive manner. The microfluidic device is made of a fluidic microchannel sealed with a thin polymer layer interfacing the fluidics and microwave electronics. Deformation of the thin circular membrane alters the permittivity and conductivity over the sensitive zone of the microwave resonator device and enables high-resolution detection of flow rate in microfluidic channels using non-contact microwave as a standalone system. The flow sensor has the linear response in the range of 0-150 µl/min for the optimal sensor performance. The highest sensitivity is detected to be 0.5 µl/min for the membrane with the diameter of 3 mm and the thickness of 100 µm. The sensor is reproducible with the error of 0.1% for the flow rate of 10 µl/min. Furthermore, the sensor functioned very stable for 20 hrs performance within the cell culture incubator in 37 °C and 5% CO2 environment for detecting the flow rate of the culture medium. This sensor does not need any contact with the liquid and is highly compatible with several applications in energy and biomedical engineering, and particularly for microfluidic-based lab-on-chips, micro-bioreactors and organ-on-chips platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...