Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Rep ; 11(1): 2987, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542327

RESUMO

To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocytomas and 26 Ependymomas) were scanned using diffusion weighted imaging across 12 different hospitals using a total of 18 different scanners. Apparent diffusion coefficient maps were produced and histogram data was extracted from tumour regions of interest. Total histograms and histogram metrics (mean, variance, skew, kurtosis and 10th, 20th and 50th quantiles) were used as data input for classifiers with accuracy determined by tenfold cross validation. Mean ADC values from the tumour regions of interest differed between tumour types, (ANOVA P < 0.001). A cut off value for mean ADC between Ependymomas and Medulloblastomas was found to be of 0.984 × 10-3 mm2 s-1 with sensitivity 80.8% and specificity 80.0%. Overall classification for the ADC histogram metrics were 85% using Naïve Bayes and 84% for Random Forest classifiers. The most commonly occurring posterior fossa paediatric brain tumours can be classified using Apparent Diffusion Coefficient histogram values to a high accuracy on a multicentre basis.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Aprendizado de Máquina , Adolescente , Astrocitoma/diagnóstico , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/patologia , Criança , Pré-Escolar , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Ependimoma/diagnóstico , Ependimoma/diagnóstico por imagem , Ependimoma/patologia , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/diagnóstico , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Pediatria/normas
2.
J Cardiovasc Magn Reson ; 22(1): 14, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32028980

RESUMO

BACKGROUND: Myocardial perfusion with cardiovascular magnetic resonance (CMR) imaging is an established diagnostic test for evaluation of myocardial ischaemia. For quantification purposes, the 16 segment American Heart Association (AHA) model poses limitations in terms of extracting relevant information on the extent/severity of ischaemia as perfusion deficits will not always fall within an individual segment, which reduces its diagnostic value, and makes an accurate assessment of outcome data or a result comparison across various studies difficult. We hypothesised that division of the myocardial segments into epi- and endocardial layers and a further circumferential subdivision, resulting in a total of 96 segments, would improve the accuracy of detecting myocardial hypoperfusion. Higher (sub-)subsegmental recording of perfusion abnormalities, which are defined relatively to the normal reference using the subsegment with the highest value, may improve the spatial encoding of myocardial blood flow, based on a single stress perfusion acquisition. OBJECTIVE: A proof of concept comparison study of subsegmentation approaches based on transmural segments (16 AHA and 48 segments) vs. subdivision into epi- and endocardial (32) subsegments vs. further circumferential subdivision into 96 (sub-)subsegments for diagnostic accuracy against invasively defined obstructive coronary artery disease (CAD). METHODS: Thirty patients with obstructive CAD and 20 healthy controls underwent perfusion stress CMR imaging at 3 T during maximal adenosine vasodilation and a dual bolus injection of 0.1 mmol/kg gadobutrol. Using Fermi deconvolution for blood flow estimation, (sub-)subsegmental values were expressed relative to the (sub-)subsegment with the highest flow. In addition, endo-/epicardial flow ratios were calculated based on 32 and 96 (sub-)subsegments. A receiver operating characteristics (ROC) curve analysis was performed to compare the diagnostic performance of discrimination between patients with CAD and healthy controls. Observer reproducibility was assessed using Bland-Altman approaches. RESULTS: Subdivision into more and smaller segments revealed greater accuracy for #32, #48 and # 96 compared to the standard #16 approach (area under the curve (AUC): 0.937, 0.973 and 0.993 vs 0.820, p < 0.05). The #96-based endo-/epicardial ratio was superior to the #32 endo-/epicardial ratio (AUC 0.979, vs. 0.932, p < 0.05). Measurements for the #16 model showed marginally better reproducibility compared to #32, #48 and #96 (mean difference ± standard deviation: 2.0 ± 3.6 vs. 2.3 ± 4.0 vs 2.5 ± 4.4 vs. 4.1 ± 5.6). CONCLUSIONS: Subsegmentation of the myocardium improves diagnostic accuracy and facilitates an objective cut-off-based description of hypoperfusion, and facilitates an objective description of hypoperfusion, including the extent and severity of myocardial ischaemia. Quantification based on a single (stress-only) pass reduces the overall amount of gadolinium contrast agent required and the length of the overall diagnostic study.


Assuntos
Adenosina/administração & dosagem , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Estenose Coronária/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Adulto , Idoso , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Doença da Artéria Coronariana/fisiopatologia , Estenose Coronária/fisiopatologia , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Estudos Prospectivos , Reprodutibilidade dos Testes , Vasodilatadores/administração & dosagem
3.
Neurooncol Pract ; 6(6): 428-437, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832213

RESUMO

BACKGROUND: 1H-magnetic resonance spectroscopy (MRS) facilitates noninvasive diagnosis of pediatric brain tumors by providing metabolite profiles. Prospective studies of diagnostic accuracy and comparisons with conventional MRI are lacking. We aimed to evaluate diagnostic accuracy of MRS for childhood brain tumors and determine added clinical value compared with conventional MRI. METHODS: Children presenting to a tertiary pediatric center with brain lesions from December 2015 through 2017 were included. MRI and single-voxel MRS were acquired on 52 tumors and sequentially interpreted by 3 radiologists, blinded to histopathology. Proportions of correct diagnoses and interrater agreement at each stage were compared. Cases were reviewed to determine added value of qualitative radiological review of MRS through increased certainty of correct diagnosis, reduced number of differentials, or diagnosis following spectroscopist evaluation. Final diagnosis was agreed by the tumor board at study end. RESULTS: Radiologists' principal MRI diagnosis was correct in 69%, increasing to 77% with MRS. MRI + MRS resulted in significantly more additional correct diagnoses than MRI alone (P = .035). There was a significant increase in interrater agreement when correct with MRS (P = .046). Added value following radiologist interpretation of MRS occurred in 73% of cases, increasing to 83% with additional spectroscopist review. First histopathological diagnosis was available a median of 9.5 days following imaging, with 25% of all patients managed without conclusive histopathology. CONCLUSIONS: MRS can improve the accuracy of noninvasive diagnosis of pediatric brain tumors and add value in the diagnostic pathway. Incorporation into practice has the potential to facilitate early diagnosis, guide treatment planning, and improve patient care.

4.
IEEE Trans Biomed Eng ; 66(9): 2617-2628, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30676937

RESUMO

OBJECTIVE: A new method for fitting diffusion-weighted magnetic resonance imaging (DW-MRI) data composed of an unknown number of multi-exponential components is presented and evaluated. METHODS: The auto-regressive discrete acquisition points transformation (ADAPT) method is an adaption of the auto-regressive moving average system, which allows for the modeling of multi-exponential data and enables the estimation of the number of exponential components without prior assumptions. ADAPT was evaluated on simulated DW-MRI data. The optimum ADAPT fit was then applied to human brain DWI data and the correlation between the ADAPT coefficients and the parameters of the commonly used bi-exponential intravoxel incoherent motion (IVIM) method were investigated. RESULTS: The ADAPT method can correctly identify the number of components and model the exponential data. The ADAPT coefficients were found to have strong correlations with the IVIM parameters. ADAPT(1,1)-ß0 correlated with IVIM-D: ρ = 0.708, P < 0.001. ADAPT(1,1)-α1 correlated with IVIM-f: ρ = 0.667, P < 0.001. ADAPT(1,1)-ß1 correlated with IVIM-D*: ρ = 0.741, P < 0.001). CONCLUSION: ADAPT provides a method that can identify the number of exponential components in DWI data without prior assumptions, and determine potential complex diffusion biomarkers. SIGNIFICANCE: ADAPT has the potential to provide a generalized fitting method for discrete multi-exponential data, and determine meaningful coefficients without prior information.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Pré-Escolar , Simulação por Computador , Humanos
5.
JMIR Med Inform ; 6(2): e30, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720361

RESUMO

BACKGROUND: Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. OBJECTIVE: The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. METHODS: The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. RESULTS: Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. CONCLUSIONS: MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments.

6.
Neurooncol Pract ; 5(1): 18-27, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29692921

RESUMO

BACKGROUND: Magnetic resonance spectroscopy (MRS) aids noninvasive diagnosis of pediatric brain tumors, but use in clinical practice is not well documented. We aimed to review clinical use of MRS, establish added value in noninvasive diagnosis, and investigate potential impact on patient care. METHODS: Sixty-nine children with lesions imaged using MRS and reviewed by the tumor board from 2014 to 2016 met inclusion criteria. Contemporaneous MRI diagnosis, spectroscopy analysis, histopathology, and clinical information were reviewed. Final diagnosis was agreed on by the tumor board at study end. RESULTS: Five cases were excluded for lack of documented MRI diagnosis. The principal MRI diagnosis by pediatric radiologists was correct in 59%, increasing to 73% with addition of MRS. Of the 73%, 19.1% (95% CI, 9.1%-33.3%) were incorrectly diagnosed with MRI alone. MRS led to a significant improvement in correct diagnosis over all tumor types (P = .012). Of diagnoses correctly made with MRI, confidence increased by 37% when adding MRS, with no patients incorrectly re-diagnosed. Indolent lesions were diagnosed noninvasively in 85% of cases, with MRS a major contributor to 91% of these diagnoses. Of all patients, 39% were managed without histopathological diagnosis. MRS contributed to diagnosis in 68% of this group, modifying it in 12%. MRS influenced management in 33% of cases, mainly through avoiding and guiding biopsy and aiding tumor characterization. CONCLUSION: MRS can improve accuracy and confidence in noninvasive diagnosis of pediatric brain lesions in clinical practice. There is potential to improve outcomes through avoiding biopsy of indolent lesions, aiding tumor characterization, and facilitating earlier family discussions and treatment planning.

7.
J Magn Reson Imaging ; 47(6): 1475-1486, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29159937

RESUMO

BACKGROUND: Pediatric retroperitoneal tumors in the renal bed are often large and heterogeneous, and their diagnosis based on conventional imaging alone is not possible. More advanced imaging methods, such as diffusion-weighted (DW) MRI and the use of intravoxel incoherent motion (IVIM), have the potential to provide additional biomarkers that could facilitate their noninvasive diagnosis. PURPOSE: To assess the use of an IVIM model for diagnosis of childhood malignant abdominal tumors and discrimination of benign from malignant lesions. STUDY TYPE: Retrospective. POPULATION: Forty-two pediatric patients with abdominal lesions (n = 32 malignant, n = 10 benign), verified by histopathology. FIELD STRENGTH/SEQUENCE: 1.5T MRI system and a DW-MRI sequence with six b-values (0, 50, 100, 150, 600, 1000 s/mm2 ). ASSESSMENT: Parameter maps of apparent diffusion coefficient (ADC), and IVIM maps of slow diffusion coefficient (D), fast diffusion coefficient (D*), and perfusion fraction (f) were computed using a segmented fitting model. Histograms were constructed for whole-tumor regions of each parameter. STATISTICAL TESTS: Comparison of histogram parameters of and their diagnostic performance was determined using Kruskal-Wallis, Mann-Whitney U, and receiver-operating characteristic (ROC) analysis. RESULTS: IVIM parameters D* and f were significantly higher in neuroblastoma compared to Wilms' tumors (P < 0.05). The ROC analysis showed that the best diagnostic performance was achieved with D* 90th percentile (area under the curve [AUC] = 0.935; P = 0.002; cutoff value = 32,376 × 10-6 mm2 /s) and f mean values (AUC = 1.00; P < 0.001; cutoff value = 14.7) in discriminating between neuroblastoma (n = 11) and Wilms' tumors (n = 8). Discrimination between tumor types was not possible with IVIM D or ADC parameters. Malignant tumors revealed significantly lower ADC, D, and higher D* values than in benign lesions (all P < 0.05). DATA CONCLUSION: IVIM perfusion parameters could distinguish between malignant childhood tumor types, providing potential imaging biomarkers for their diagnosis. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1475-1486.


Assuntos
Neoplasias Abdominais/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Pediatria/métodos , Adolescente , Algoritmos , Biomarcadores/metabolismo , Criança , Pré-Escolar , Diagnóstico por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Perfusão , Curva ROC , Estudos Retrospectivos
8.
Magn Reson Med ; 79(4): 2359-2366, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28786132

RESUMO

PURPOSE: 3T magnetic resonance scanners have boosted clinical application of 1 H-MR spectroscopy (MRS) by offering an improved signal-to-noise ratio and increased spectral resolution, thereby identifying more metabolites and extending the range of metabolic information. Spectroscopic data from clinical 1.5T MR scanners has been shown to discriminate between pediatric brain tumors by applying machine learning techniques to further aid diagnosis. The purpose of this multi-center study was to investigate the discriminative potential of metabolite profiles obtained from 3T scanners in classifying pediatric brain tumors. METHODS: A total of 41 pediatric patients with brain tumors (17 medulloblastomas, 20 pilocytic astrocytomas, and 4 ependymomas) were scanned across four different hospitals. Raw spectroscopy data were processed using TARQUIN. Borderline synthetic minority oversampling technique was used to correct for the data skewness. Different classifiers were trained using linear discriminative analysis, support vector machine, and random forest techniques. RESULTS: Support vector machine had the highest balanced accuracy for discriminating the three tumor types. The balanced accuracy achieved was higher than the balanced accuracy previously reported for similar multi-center dataset from 1.5T magnets with echo time 20 to 32 ms alone. CONCLUSION: This study showed that 3T MRS can detect key differences in metabolite profiles for the main types of childhood tumors. Magn Reson Med 79:2359-2366, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Reconhecimento Automatizado de Padrão , Adolescente , Algoritmos , Astrocitoma/diagnóstico por imagem , Criança , Análise por Conglomerados , Diagnóstico por Computador , Ependimoma/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Aprendizado de Máquina , Espectroscopia de Ressonância Magnética , Masculino , Meduloblastoma/diagnóstico por imagem , Pediatria/métodos , Análise de Componente Principal , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Máquina de Vetores de Suporte , Adulto Jovem
9.
Magn Reson Med ; 77(6): 2114-2124, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27404900

RESUMO

PURPOSE: Classification of pediatric brain tumors from 1 H-magnetic resonance spectroscopy (MRS) can aid diagnosis and management of brain tumors. However, varied incidence of the different tumor types leads to imbalanced class sizes and introduces difficulties in classifying rare tumor groups. This study assessed different imbalanced multiclass learning techniques and compared the use of complete spectra and quantified metabolite profiles for classification of three main childhood brain tumor types. METHODS: Single-voxel, Short echo time MRS data were collected from 90 patients with pilocytic astrocytoma (n = 42), medulloblastoma (n = 38), or ependymoma (n = 10). Both spectra and metabolite profiles were used to develop the learning algorithms. The borderline synthetic minority oversampling technique and AdaboostM1 were used to correct for the skewed distribution. Classifiers were trained using five different pattern recognition algorithms. RESULTS: Use of imbalanced learning techniques improved the balanced accuracy rate (BAR) of all classification methods (average BAR over all classification methods for spectra: oversampled data = 0.81, original = 0.63, P < 0.001; metabolite concentration: oversampled-data = 0.91, original = 0.75, P < 0.0001). Performance of all classifiers in discriminating ependymomas increased when oversampled data were used compared with original data for both complete spectra (F-measure P < 0.01) and metabolite profile (F-measure P < 0.001). CONCLUSION: Imbalanced learning techniques improve the classification accuracy of childhood brain tumors from MRS where group sizes differ and facilitate the inclusion of rarer tumor types into clinical decision support systems. Magn Reson Med 77:2114-2124, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Algoritmos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Diagnóstico por Computador/métodos , Aprendizado de Máquina , Espectroscopia de Prótons por Ressonância Magnética/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
J Magn Reson Imaging ; 45(5): 1325-1334, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27545824

RESUMO

PURPOSE: To investigate the robustness of constrained and simultaneous intravoxel incoherent motion (IVIM) fitting methods and the estimated IVIM parameters (D, D* and f) for applications in brain and low-perfused tissues. MATERIALS AND METHODS: Model data simulations relevant to brain and low-perfused tumor tissues were computed to assess the accuracy, relative bias, and reproducibility (CV%) of the fitting methods in estimating the IVIM parameters. The simulations were performed at a series of signal-to-noise ratio (SNR) levels to assess the influence of noise on the fitting. RESULTS: The estimated IVIM parameters from model simulations were found significantly different (P < 0.05) using simultaneous and constrained fitting methods at low SNR. Higher accuracy and reproducibility were achieved with the constrained fitting method. Using this method, the mean error (%) for the estimated IVIM parameters at a clinically relevant SNR = 40 were D 0.35, D* 41.0 and f 4.55 for the tumor model and D 1.87, D* 2.48, and f 7.49 for the gray matter model. The most robust parameters were the IVIM-D and IVIM-f. The IVIM-D* was increasingly overestimated at low perfusion. CONCLUSION: A constrained IVIM fitting method provides more accurate and reproducible IVIM parameters in low-perfused tissue compared with simultaneous fitting. LEVEL OF EVIDENCE: 3 J. MAGN. RESON. IMAGING 2017;45:1325-1334.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Criança , Simulação por Computador , Meios de Contraste , Difusão , Humanos , Movimento (Física) , Distribuição Normal , Perfusão , Reprodutibilidade dos Testes , Razão Sinal-Ruído
11.
J Cardiovasc Magn Reson ; 18: 4, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26767610

RESUMO

BACKGROUND: Microvascular ischemia is one of the hallmarks of hypertrophic cardiomyopathy (HCM) and has been associated with poor outcome. However, myocardial fibrosis, seen on cardiovascular magnetic resonance (CMR) as late gadolinium enhancement (LGE), can be responsible for rest perfusion defects in up to 30% of patients with HCM, potentially leading to an overestimation of the ischemic burden. We investigated the effect of left ventricle (LV) scar on the total LV ischemic burden using novel high-resolution perfusion analysis techniques in conjunction with LGE quantification. METHODS: 30 patients with HCM and unobstructed epicardial coronary arteries underwent CMR with Fermi constrained quantitative perfusion analysis on segmental and high-resolution data. The latter were corrected for the presence of fibrosis on a pixel-by-pixel basis. RESULTS: High-resolution quantification proved more sensitive for the detection of microvascular ischemia in comparison to segmental analysis. Areas of LGE were associated with significant reduction of myocardial perfusion reserve (MPR) leading to an overestimation of the total ischemic burden on non-corrected perfusion maps. Using a threshold MPR of 1.5, the presence of LGE caused an overestimation of the ischemic burden of 28%. The ischemic burden was more severe in patients with fibrosis, also after correction of the perfusion maps, in keeping with more severe disease in this subgroup. CONCLUSIONS: LGE is an important confounder in the assessment of the ischemic burden in patients with HCM. High-resolution quantitative analysis with LGE correction enables the independent evaluation of microvascular ischemia and fibrosis and should be used when evaluating patients with HCM.


Assuntos
Cardiomiopatia Hipertrófica/diagnóstico , Cicatriz/diagnóstico , Meios de Contraste , Circulação Coronária , Imageamento por Ressonância Magnética , Microcirculação , Isquemia Miocárdica/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Miocárdio/patologia , Compostos Organometálicos , Idoso , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Estudos de Viabilidade , Feminino , Fibrose , Humanos , Hiperemia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
Stud Health Technol Inform ; 213: 49-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26152950

RESUMO

Novel imaging techniques are playing an increasing role in tumour characterisation, assessment and management. However, incorporating imaging data into clinical trials presents a number of challenges in terms of quality control, standardisation in data collection, interoperability of widely used archiving systems and extensibility of imaging software architectures. Additionally, currently available monolithic applications cannot fulfil the diverse and rapidly changing needs of the clinical imaging research community. This paper discusses the limitations of the current CCLG Remote Data Entry (RDE) system and introduces the prototype of an alternative modular system based on the Extensible Neuroimaging Archive Toolkit (XNAT). The modular nature of the presented prototype promotes incremental software evolution and allows for flexible system customisation to suit the needs of individual imaging centres.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto/organização & administração , Armazenamento e Recuperação da Informação/métodos , Neuroimagem/métodos , Criança , Humanos , Design de Software , Integração de Sistemas , Interface Usuário-Computador
13.
J Cardiovasc Magn Reson ; 17: 13, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25881050

RESUMO

BACKGROUND: Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. METHODS: A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. RESULTS: 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. CONCLUSIONS: Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.


Assuntos
Circulação Coronária , Vasos Coronários/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Adulto , Idoso , Estudos de Viabilidade , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda
14.
Eur Heart J Cardiovasc Imaging ; 16(10): 1082-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25812572

RESUMO

AIMS: To assess the feasibility of high-resolution quantitative cardiovascular magnetic resonance (CMR) voxel-wise perfusion imaging using clinical 1.5 and 3 T sequences and to validate it using fluorescently labelled microspheres in combination with a state of the art imaging cryomicrotome in a novel, isolated blood-perfused MR-compatible free beating pig heart model without respiratory motion. METHODS AND RESULTS: MR perfusion imaging was performed in pig hearts at 1.5 (n = 4) and 3 T (n = 4). Images were acquired at physiological flow ('rest'), reduced flow ('ischaemia'), and during adenosine-induced hyperaemia ('stress') in control and coronary occlusion conditions. Fluorescently labelled microspheres and known coronary myocardial blood flow represented the reference standards for quantitative perfusion validation. For the comparison with microspheres, the LV was divided into 48 segments based on a subdivision of the 16 AHA segments into subendocardial, midmyocardial, and subepicardial subsegments. Perfusion quantification of the time-signal intensity curves was performed using a Fermi function deconvolution. High-resolution quantitative voxel-wise perfusion assessment was able to distinguish between occluded and remote myocardium (P < 0.001) and between rest, ischaemia, and stress perfusion conditions at 1.5 T (P < 0.001) and at 3 T (P < 0.001). CMR-MBF estimates correlated well with the microspheres at the AHA segmental level at 1.5 T (r = 0.94, P < 0.001) and at 3 T (r = 0.96, P < 0.001) and at the subendocardial, midmyocardial, and subepicardial level at 1.5 T (r = 0.93, r = 0.9, r = 0.88, P < 0.001, respectively) and at 3 T (r = 0.91, r = 0.95, r = 0.84, P < 0.001, respectively). CONCLUSION: CMR-derived voxel-wise quantitative blood flow assessment is feasible and very accurate compared with microspheres. This technique is suitable for both clinically used field strengths and may provide the tools to assess extent and severity of myocardial ischaemia.


Assuntos
Circulação Coronária/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Microesferas , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Estudos de Viabilidade , Hiperemia/fisiopatologia , Aumento da Imagem/métodos , Modelos Animais , Compostos Organometálicos , Razão Sinal-Ruído , Suínos
15.
Europace ; 17(8): 1241-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25687748

RESUMO

AIMS: To prospectively compare cardiac magnetic resonance late gadolinium enhancement (LGE) findings created by standard vs. robotically assisted catheter ablation lesions and correlate these with clinical outcomes. METHODS AND RESULTS: Forty paroxysmal atrial fibrillation patients (mean age 54 ± 13.8 years) undergoing first left atrial ablation were randomized to either robotic-assisted navigation (Hansen Sensei(®) X) or standard navigation. Pre-procedural, acute (24 h post-procedure) and late (beyond 3 months) scans were performed with LGE and T2W imaging sequences and percentage circumferential enhancement around the pulmonary vein (PV) antra were quantified. Baseline pre-procedural enhancements were similar in both groups. On acute imaging, mean % encirclements by LGE and T2W signal were 72% and 80% in the robotic group vs. 60% (P = 0.002) and 76%(P = 0.45) for standard ablation. On late imaging, the T2W signal resolved to baseline in both groups. Late gadolinium enhancement remained the predominant signal with 56% encirclement in the robotic group vs. 45% in the standard group (P = 0.04). At 6 months follow-up, arrhythmia-free patients had an almost similar mean LGE encirclement (robotic 64%, standard 60%, P = 0.45) but in recurrences, LGE was higher in the robotic group (43% vs. 30%, P = 0.001). At mean 3 years follow-up, 1.3 procedures were performed in the robotic group compared with 1.9 (P < 0.001) in the standard to achieve a success rate of 80% vs. 75%. CONCLUSION: Robotically assisted ablation results in greater LGE around the PV antrum. Effective lesions created through improved catheter stability and contact force during initial treatment may have a role in reducing subsequent re-do procedures.


Assuntos
Fibrilação Atrial/patologia , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Imagem Cinética por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Cirurgia Assistida por Computador/métodos , Meios de Contraste , Feminino , Gadolínio , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto , Resultado do Tratamento
16.
Magn Reson Med ; 73(4): 1623-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24844947

RESUMO

PURPOSE: High-resolution myocardial perfusion analysis allows for preserving spatial information with excellent sensitivity for subendocardial ischemia detection. However, it suffers from low signal-to-noise ratio. Commonly, spatial averaging is used to increase signal-to-noise ratio. This bears the risk of losing information about the extent, localization and transmurality of ischemia. This study investigates spatial-averaging effects on perfusion-estimates accuracy. METHODS: Perfusion data were obtained from patients and healthy volunteers. Spatial averaging was performed on voxel-based data in transmural and angular direction to reduce resolution to 50, 20, and 10% of its original value. Fit quality assessment method is used to measure the fraction of modeled information and remaining unmodeled information in the residuals. RESULTS: Fraction of modeled information decreased in patients as resolution reduced. This decrease was more evident for Fermi and exponential in transmural direction. Fermi and exponential showed significant difference at 50% resolution (Fermi P < 0.001, exponential P =0.0014). No significant differences were observed for autoregressive-moving-average model (P = 0.081). At full resolution, autoregressive-moving-average model has the lowest fraction of residual information (0.3). Differences were observed comparing ischemic regions perfusion-estimates coefficient of variation at transmural and angular direction. CONCLUSION: Angular averaging preserves more information compared to transmural averaging. Reducing resolution level below 50% at transmural and 20% at angular direction results in losing information about transmural perfusion differences. Maximum voxel size of 2 × 2 mm(2) is necessary to avoid loss of physiological information due to spatial averaging.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Imagem Cinética por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/fisiopatologia , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
17.
J Cardiovasc Magn Reson ; 16: 82, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25315438

RESUMO

BACKGROUND: Cardiovascular Magnetic Resonance (CMR) myocardial perfusion imaging has the potential to evolve into a method allowing full quantification of myocardial blood flow (MBF) in clinical routine. Multiple quantification pathways have been proposed. However at present it remains unclear which algorithm is the most accurate. An isolated perfused, magnetic resonance (MR) compatible pig heart model allows very accurate titration of MBF and in combination with high-resolution assessment of fluorescently-labeled microspheres represents a near optimal platform for validation. We sought to investigate which algorithm is most suited to quantify myocardial perfusion by CMR at 1.5 and 3 Tesla using state of the art CMR perfusion techniques and quantification algorithms. METHODS: First-pass perfusion CMR was performed in an MR compatible blood perfused pig heart model. We acquired perfusion images at physiological flow ("rest"), reduced flow ("ischaemia") and during adenosine-induced hyperaemia ("hyperaemia") as well as during coronary occlusion. Perfusion CMR was performed at 1.5 Tesla (n = 4 animals) and at 3 Tesla (n = 4 animals). Fluorescently-labeled microspheres and externally controlled coronary blood flow served as reference standards for comparison of different quantification strategies, namely Fermi function deconvolution (Fermi), autoregressive moving average modelling (ARMA), exponential basis deconvolution (Exponential) and B-spline basis deconvolution (B-spline). RESULTS: All CMR derived MBF estimates significantly correlated with microsphere results. The best correlation was achieved with Fermi function deconvolution both at 1.5 Tesla (r = 0.93, p < 0.001) and at 3 Tesla (r = 0.9, p < 0.001). Fermi correlated significantly better with the microspheres than all other methods at 3 Tesla (p < 0.002). B-spline performed worse than Fermi and Exponential at 1.5 Tesla and showed the weakest correlation to microspheres (r = 0.74, p < 0.001). All other comparisons were not significant. At 3 Tesla exponential deconvolution performed worst (r = 0.49, p < 0.001). CONCLUSIONS: CMR derived quantitative blood flow estimates correlate with true myocardial blood flow in a controlled animal model. Amongst the different techniques, Fermi function deconvolution was the most accurate technique at both field strengths. Perfusion CMR based on Fermi function deconvolution may therefore emerge as a useful clinical tool providing accurate quantitative blood flow assessment.


Assuntos
Circulação Coronária , Corantes Fluorescentes , Imageamento por Ressonância Magnética/métodos , Microbolhas , Isquemia Miocárdica/diagnóstico , Imagem de Perfusão do Miocárdio/métodos , Algoritmos , Animais , Velocidade do Fluxo Sanguíneo , Meios de Contraste , Oclusão Coronária/diagnóstico , Oclusão Coronária/fisiopatologia , Modelos Animais de Doenças , Hiperemia/diagnóstico , Hiperemia/fisiopatologia , Interpretação de Imagem Assistida por Computador , Técnicas In Vitro , Isquemia Miocárdica/fisiopatologia , Compostos Organometálicos , Perfusão , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Suínos , Fatores de Tempo
18.
IEEE Trans Biomed Eng ; 61(9): 2499-2506, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24833413

RESUMO

First-pass perfusion cardiac magnetic resonance(CMR) allows the quantitative assessment of myocardial blood flow(MBF). However, flow estimates are sensitive to the delay between the arterial and myocardial tissue tracer arrival time (tOnset) and the accurate estimation of MBF relies on the precise identification of tOnset . The aim of this study is to assess the sensitivity of the quantification process to tOnset at voxel level. Perfusion data were obtained from series of simulated data, a hardware perfusion phantom, and patients. Fermi deconvolution has been used for analysis. A novel algorithm, based on sequential deconvolution,which minimizes the error between myocardial curves and fitted curves obtained after deconvolution, has been used to identify the optimal tOnset for each region. Voxel-wise analysis showed to be more sensitive to tOnset compared to segmental analysis. The automated detection of the tOnset allowed a net improvement of the accuracy of MBF quantification and in patients the identification of perfusion abnormalities in territories that were missed when a constant user-selected tOnset was used. Our results indicate that high-resolution MBF quantification should be performed with optimized tOnset values at voxel level.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Meios de Contraste/farmacocinética , Circulação Coronária/fisiologia , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Estudos de Casos e Controles , Simulação por Computador , Doença da Artéria Coronariana/fisiopatologia , Humanos , Imagens de Fantasmas
19.
J Cardiovasc Magn Reson ; 15: 62, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23870734

RESUMO

BACKGROUND: Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported. METHODS: Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting. RESULTS: Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84). CONCLUSION: First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.


Assuntos
Circulação Coronária , Dipiridamol , Corantes Fluorescentes , Hiperemia/fisiopatologia , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Vasodilatadores , Animais , Separação Celular/métodos , Meios de Contraste , Dipiridamol/administração & dosagem , Estudos de Viabilidade , Citometria de Fluxo , Corantes Fluorescentes/administração & dosagem , Injeções Intravenosas , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microesferas , Compostos Organometálicos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Vasodilatadores/administração & dosagem
20.
Magn Reson Med ; 69(3): 698-707, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22532435

RESUMO

The aim of this article is to describe a novel hardware perfusion phantom that simulates myocardial first-pass perfusion allowing comparisons between different MR techniques and validation of the results against a true gold standard. MR perfusion images were acquired at different myocardial perfusion rates and variable doses of gadolinium and cardiac output. The system proved to be sensitive to controlled variations of myocardial perfusion rate, contrast agent dose, and cardiac output. It produced distinct signal intensity curves for perfusion rates ranging from 1 to 10 mL/mL/min. Quantification of myocardial blood flow by signal deconvolution techniques provided accurate measurements of perfusion. The phantom also proved to be very reproducible between different sessions and different operators. This novel hardware perfusion phantom system allows reliable, reproducible, and efficient simulation of myocardial first-pass MR perfusion. Direct comparison between the results of image-based quantification and reference values of flow and myocardial perfusion will allow development and validation of accurate quantification methods.


Assuntos
Angiografia por Ressonância Magnética/instrumentação , Imagem Cinética por Ressonância Magnética/instrumentação , Imagem de Perfusão do Miocárdio/instrumentação , Imagens de Fantasmas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...