Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(20): 25312-25326, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32342428

RESUMO

The Fluid Catalytic Cracking Unit process converts heavy vacuum gas oil into more valuable products in the presence of zeolite catalyst at 520 °C and 2.5 bar. The coke is burned off with air in the regenerator tower at 700 °C and 230 ton / h of flue gases are produced. The flue gases consist of CO2 (12.7% mole), N2 (66.2% mole), H2O (19.2% mole), O2 (1.7% mole), and SO2 (0.2% mole). In this study, the chemical absorption of CO2 in an absorption and desorption pilot plant was investigated and this process was simulated by Aspen Hysys. The pilot plant used has an absorber tower of 15 cm in diameter and a stripper tower of 10 cm. The towers were filled up to 1.5 m with 3-mm Raschig ring packing. A concentration of 30 wt% diethanolamine (DEA) solvent is used for CO2 absorption. Absorption was carried out at 1.1 bar, solvent temperature of 40 °C, flue gas temperature of 60 °C, and liquid to gas ratio (L/G = 3.7). Amine regeneration was carried out at 125 °C and 1.9 bar. The CO2 absorption efficiency in the pilot plant was obtained 96% and in Aspen Hysys simulation its 95%. The CO2 recovery efficiency in the stripper tower obtained 95% and CO2 purity is 94.6%. The overall efficiency of the chemical absorption with this process is 92%, and the regeneration energy in the stripper tower is 2.52 GJ/ton-co2. With this method, 1003 ton/day CO2 is captured from the FCCU flue gases and preventing emission to the atmosphere.


Assuntos
Dióxido de Carbono , Gases , Etanolaminas , Irã (Geográfico) , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...