Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398813

RESUMO

BACKGROUND: Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator which is naturally produced in the body and found in certain foods. The aim of this study was to assess the effect of a bioavailable formulated form of PEA (Levagen+®) on serum BDNF levels and parameters of cognitive function in healthy adults. METHODS: A randomised double-blinded placebo-controlled cross-over trial was implemented to measure the effects of a 6-week 700 mg/day course of formulated PEA supplementation versus a placebo. Participants (n = 39) completed pre- and post-assessments of a lab-based cognitive test. Serum samples were collected to measure BDNF concentrations using an immunoassay. RESULTS: A significant increase in serum BDNF levels was found following PEA supplementation compared with the placebo (p = 0. 0057, d = 0.62). The cognition test battery demonstrated improved memory with PEA supplementation through better first success (p = 0.142, d = 0.54) and fewer errors (p = 0.0287; d = -0.47) on the Paired Associates Learning test. CONCLUSION: This was the first study to report a direct beneficial effect of Levagen+® PEA supplementation on memory improvement as well as corresponding increases in circulating neurotrophic marker levels. This suggests that formulated PEA holds promise as an innovative and practical intervention for cognitive health enhancement.


Assuntos
Amidas , Fator Neurotrófico Derivado do Encéfalo , Cognição , Etanolaminas , Ácidos Palmíticos , Adulto , Humanos , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego
2.
World J Gastroenterol ; 29(32): 4831-4850, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37701135

RESUMO

Non-alcoholic fatty liver disease (NAFLD) causes significant global disease burden and is a leading cause of mortality. NAFLD induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of NAFLD is widely recognised, the precise triggers for disease progression are still to be fully elucidated. Furthermore, the propagation to cirrhosis is poorly understood. Whilst some progress in terms of treatment options have been explored, an incomplete understanding of the hepatic cellular and molecular alterations limits their clinical utility. We have therefore reviewed some of the key pathways responsible for the pathogenesis of NAFLD such as innate and adaptative immunity, lipotoxicity and fibrogenesis, and highlighted current trials and treatment options for NAFLD patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Imunidade Adaptativa , Progressão da Doença , Carga Global da Doença , Hepatócitos
3.
J Microencapsul ; 40(4): 217-232, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36752024

RESUMO

Azithromycin is an antibiotic proposed as a treatment for the coronavirus disease 2019 (COVID-19) due to its immunomodulatory activity. The aim of this study is to develop dry powder formulations of azithromycin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocomposite microparticles for pulmonary delivery to improve the low bioavailability of azithromycin. Double emulsion method was used to produce nanoparticles, which were then spray dried to form nanocomposite microparticles. Encapsulation efficiency and drug loading were analysed, and formulations were characterised by particle size, zeta potential, morphology, crystallinity and in-vitro aerosol dispersion performance. The addition of chitosan changed the neutrally-charged azithromycin only formulation to positively-charged nanoparticles. However, the addition of chitosan also increased the particle size of the formulations. It was observed in the NGI® data that there was an improvement in dispersibility of the chitosan-related formulations. It was demonstrated in this study that all dry powder formulations were able to deliver azithromycin to the deep lung regions, which suggested the potential of using azithromycin via pulmonary drug delivery as an effective method to treat COVID-19.


Assuntos
COVID-19 , Quitosana , Nanopartículas , Humanos , Azitromicina , Pós , Administração por Inalação , Tratamento Farmacológico da COVID-19 , Aerossóis e Gotículas Respiratórios , Tamanho da Partícula
4.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36670992

RESUMO

As the blood-brain barrier (BBB) prevents most compounds from entering the brain, nanocarrier delivery systems are frequently being explored to potentially enhance the passage of drugs due to their nanometer sizes and functional characteristics. This study aims to investigate whether Pluronic® F68 (P68) and dequalinium (DQA) nanocarriers can improve the ability of curcumin, n-acetylcysteine (NAC) and/or deferoxamine (DFO), to access the brain, specifically target mitochondria and protect against rotenone by evaluating their effects in a combined Transwell® hCMEC/D3 BBB and SH-SY5Y based cellular Parkinson's disease (PD) model. P68 + DQA nanoformulations enhanced the mean passage across the BBB model of curcumin, NAC and DFO by 49%, 28% and 49%, respectively (p < 0.01, n = 6). Live cell mitochondrial staining analysis showed consistent co-location of the nanocarriers within the mitochondria. P68 + DQA nanocarriers also increased the ability of curcumin and NAC, alone or combined with DFO, to protect against rotenone induced cytotoxicity and oxidative stress by up to 19% and 14% (p < 0.01, n = 6), as measured by the MTT and mitochondrial hydroxyl radical assays respectively. These results indicate that the P68 + DQA nanocarriers were successful at enhancing the protective effects of curcumin, NAC and/or DFO by increasing the brain penetrance and targeted delivery of the associated bioactives to the mitochondria in this model. This study thus emphasises the potential effectiveness of this nanocarrier strategy in fully utilising the therapeutic benefit of these antioxidants and lays the foundation for further studies in more advanced models of PD.

5.
Antioxidants (Basel) ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247487

RESUMO

Pancreatic ß-cells play a crucial role in maintaining glucose homeostasis, although they are susceptible to oxidative damage, which can ultimately impair their functionality. Thinned nectarines (TNs) have gained increasing interest due to their high polyphenol and abscisic acid (ABA) content, both of which possess antidiabetic properties. Nevertheless, the efficacy of these bioactive compounds may be compromised by limited stability and bioavailability in vivo. This study aimed to develop nanoformulations (NFs) containing pure ABA or a TN extract (TNE) at an equivalent ABA concentration. Subsequently, the insulinotropic and antioxidant potential of the NFs and their unformulated (free) forms were compared in MIN-6 pancreatic cells exposed to varying glucose (5.5 mM and 20 mM) and iron (100 µM) concentrations. NF-TNE treatment exhibited enhanced antioxidant activity compared to free TNE, while ABA-based groups showed no significant antioxidant activity. Moreover, MIN6 cells incubated with both high glucose and iron levels demonstrated significantly higher insulin AUC levels after treatment with all samples, with NF-TNE displaying the most pronounced effect. In conclusion, these results highlight the additional beneficial potential of TNE due to the synergistic combination of bioactive compounds and demonstrate the significant advantage of using a nanoformulation approach to further increase the benefits of this and similar phytobioactive molecules.

6.
Front Public Health ; 11: 1121936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328536

RESUMO

Introduction: The benefits of walking on health and well-being is well established and regarded as the most accessible form of physical activity (PA) that most individuals can incorporate into their lives. Despite the benefits, the impact of a competitive walking intervention combined with a prize incentive in the workplace is yet to be established. The aim of this intervention was to promote PA among university employees through teams-based competition with a prize incentive targeted towards the recommended 10,000 steps per day. Methods: A total of 49 employees participated and formed eight departmental teams ranging from Senior Admin management, Educational & Social work, Nursing & Midwifery, Sport & Exercise, Health Sciences, Admin Assistant, Library, and IT to compete in a walking intervention. Each team was handed an ActiGraph wGT3X-BT from Monday to Friday to record their walking steps. Steps. Post intervention participants completed an open-ended survey to provide their views about the intervention. Results: The ActiGraph findings determined that steps increased by 4,799 per day from daily baseline of 5,959 to 10,758 throughout this intervention. The themes from qualitative data showed that the prize incentive and competitive nature of this intervention has motivated staff to walk more, changed their behaviour, enjoyed the team-based competition, and improved perceived productivity in the workplace. Discussion and conclusion: This intervention increased employees' daily steps by 4,799 and met the 10,000 steps guideline. The 'Health Sciences' team recorded the highest steps 531,342 followed by the 'Education and Social Work' accumulating 498,045 steps throughout this intervention. This intervention with prize incentive demonstrated a positive impact on employees personal and work-based outcomes as well as contributed to the workplace PA, health, and wellbeing literature, and more specifically, to the scarce research focused on university settings.


Assuntos
Exercício Físico , Local de Trabalho , Humanos , Universidades , Inquéritos e Questionários , Motivação
7.
Eur J Pharm Biopharm ; 179: 194-205, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36099971

RESUMO

Fungal nail infection (Onychomycosis) often requires prolonged treatment and is associated with a high risk of resistance to treatment. Here in this contribution, we introduce a novel approach to enhance penetration and antifungal activity of the antifungal drug griseofulvin (GF). Solid dispersions were prepared with hydroxypropyl methylcellulose acetate succinate (HPMCAS) and combined with surfactant (either sodium dodecyl sulphate (SDS), dodecyl trimethylammonium bromide (DTAB), or Pluronic F127) using mechanochemical activation. The prepared powders were then suspended with spray-dried silica-coated silver nanoparticles and applied onto infected bovine hooves to assess permeability and antifungal activity. The results showed that the prepared nanosuspensions significantly suppressed fungal activity causing disruption of fungal biofilms. Raman mapping showed enhanced permeation while dynamic vapor sorption (DVS), and particle size measurements showed varied effects depending on the type of surfactant and milling conditions. The prepared nanosuspensions displayed enhanced solubility of the poorly soluble drug reaching approximately 1.2 mg/mL. The results showed that the dispersions that contained DTAB displayed maximum efficacy while the inclusion of colloidal silver did not seem to significantly improve the antifungal activity compared to other formulations.


Assuntos
Nanopartículas Metálicas , Onicomicose , Animais , Antifúngicos/farmacologia , Brometos , Bovinos , Composição de Medicamentos/métodos , Excipientes , Griseofulvina , Onicomicose/tratamento farmacológico , Tamanho da Partícula , Poloxâmero , Compostos de Amônio Quaternário , Dióxido de Silício , Prata , Dodecilsulfato de Sódio , Solubilidade , Tensoativos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35954798

RESUMO

INTRODUCTION: Lack of time, management support, insufficient facilitates, workload balance, and culture are often reported as common barriers to physical activity (PA) participation in the workplace. In comparison, identifying facilitators of PA in the workplace are scarce. A 'one-size-fits-all' approach to overcoming the barriers may also be unsuccessful within university settings where multidisciplinary workforce exists due to the heterogeneity nature of job roles. Thus, the aim of this study was to understand the perceived barriers and facilitators of PA of university employees who were classified as active or inactive based on their job roles. METHODS: Forty-one employees (female = 17; male = 24) participated in focus groups to discuss their perceived barriers and facilitators to PA in the workplace. Participants were categorised based on their PA levels as active and inactive prior analysing the semi-structured focus groups data via using thematic analysis. RESULTS AND DISCUSSION: The results showed that a lack of time was reported by 80% of the participants as a barrier to PA, including 63% inactive and 17% of the active participants. This included 27% administrators' staff, 23% academics, 19% senior management, and 11% professional service staff. Over 75% participants reported a lack of management support as one of the perceived barriers to their PA engagement in the workplace. Approximately 58% also reported workplace culture as a barrier to PA participation. Open access to a gym on campus was perceived to be the main facilitator to engaging in PA in the future. Similarly, increased management support for engaging in PA and having flexibility during working days were perceived as facilitators for PA engagement and a way to reduced sedentary behaviour in the workplace. CONCLUSIONS: These findings contribute to the limited literature in terms of evaluating obstacles and facilitators of university employees to encourage engagement with PA in the workplace. These findings can be applied to form PA, health, and wellbeing-related interventions specifically targeting these identified barriers that are experienced in the workplace and thereby potentially reducing absenteeism and increasing productivity.


Assuntos
Comportamento Sedentário , Local de Trabalho , Exercício Físico , Feminino , Grupos Focais , Humanos , Masculino , Pesquisa Qualitativa
9.
Nutrients ; 14(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684160

RESUMO

Obesity is a multifactorial disease and is associated with an increased risk of developing metabolic syndrome and co-morbidities. Dysregulated expansion of the adipose tissue during obesity induces local tissue hypoxia, altered secretory profile of adipokines, cytokines and chemokines, altered profile of local tissue inflammatory cells leading to the development of low-grade chronic inflammation. Low grade chronic inflammation is considered to be the underlying mechanism that increases the risk of developing obesity associated comorbidities. The glucocorticoid induced protein annexin A1 and its N-terminal peptides are anti-inflammatory mediators involved in resolving inflammation. The aim of the current study was to investigate the role of annexin A1 in obesity and associated inflammation. To achieve this aim, the current study analysed data from two feasibility studies in clinical populations: (1) bariatric surgery patients (Pre- and 3 months post-surgery) and (2) Lipodystrophy patients. Plasma annexin A1 levels were increased at 3-months post-surgery compared to pre-surgery (1.2 ± 0.1 ng/mL, n = 19 vs. 1.6 ± 0.1 ng/mL, n = 9, p = 0.009) and positively correlated with adiponectin (p = 0.009, r = 0.468, n = 25). Plasma annexin A1 levels were decreased in patients with lipodystrophy compared to BMI matched controls (0.2 ± 0.1 ng/mL, n = 9 vs. 0.97 ± 0.1 ng/mL, n = 30, p = 0.008), whereas CRP levels were significantly elevated (3.3 ± 1.0 µg/mL, n = 9 vs. 1.4 ± 0.3 µg/mL, n = 31, p = 0.0074). The roles of annexin A1 were explored using an in vitro cell based model (SGBS cells) mimicking the inflammatory status that is observed in obesity. Acute treatment with the annexin A1 N-terminal peptide, AC2-26 differentially regulated gene expression (including PPARA (2.8 ± 0.7-fold, p = 0.0303, n = 3), ADIPOQ (2.0 ± 0.3-fold, p = 0.0073, n = 3), LEP (0.6 ± 0.2-fold, p = 0.0400, n = 3), NAMPT (0.4 ± 0.1-fold, p = 0.0039, n = 3) and RETN (0.1 ± 0.03-fold, p < 0.0001, n = 3) in mature obesogenic adipocytes indicating that annexin A1 may play a protective role in obesity and inflammation. However, this effect may be overshadowed by the continued increase in systemic inflammation associated with rapid tissue expansion in obesity.


Assuntos
Anexina A1 , Lipodistrofia , Doenças Metabólicas , Anexina A1/farmacologia , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/tratamento farmacológico , Lipodistrofia/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Peptídeos/farmacologia
10.
Diabetes Obes Metab ; 24(10): 2038-2050, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35676820

RESUMO

AIM: This study investigated whether therapeutically relevant concentrations of fluoxetine, which have been shown to reduce plasma glucose and glycated haemoglobin independent of changes in food intake and body weight, regulate beta-cell function and improve glucose homeostasis. METHODS: Cell viability, insulin secretion, beta-cell proliferation and apoptosis were assessed after exposure of MIN6 beta cells or isolated mouse and human islets to 0.1, 1 or 10 µmol/L fluoxetine. The effect of fluoxetine (10 mg/kg body weight) administration on glucose homeostasis and islet function was also examined in ob/ob mice. RESULTS: Exposure of MIN6 cells and mouse islets to 0.1 and 1 µmol/L fluoxetine for 72 hours did not compromise cell viability but 10 µmol/L fluoxetine significantly increased Trypan blue uptake. The dose of 1 µmol/L fluoxetine significantly increased beta-cell proliferation and protected islet cells from cytokine-induced apoptosis. In addition, 1 µmol/L fluoxetine induced rapid and reversible potentiation of glucose-stimulated insulin secretion from islets isolated from mice, and from lean and obese human donors. Finally, intraperitoneal administration of fluoxetine to ob/ob mice over 14 days improved glucose tolerance and resulted in significant increases in beta-cell proliferation and enhanced insulin secretory capacity. CONCLUSIONS: These data are consistent with a role for fluoxetine in regulating glucose homeostasis through direct effects on beta cells. Fluoxetine thus demonstrates promise as a preferential antidepressant for patients with concomitant occurrence of depression and diabetes.


Assuntos
Fluoxetina , Ilhotas Pancreáticas , Animais , Peso Corporal , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
11.
Nutrients ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277071

RESUMO

Ferrous sulphate (FS) is widely used as an iron supplement to treat iron deficiency (ID), but is known to induce inflammation causing gastric side-effects resulting in poor adherence to supplement regimens. Curcumin, a potent antioxidant, has been reported to suppress inflammation via down regulation of NF-κB. The aim of the present double blind, placebo-controlled randomised trial was to assess whether co-administration of FS with a formulated, bioavailable form of curcumin (HydroCurc™) could reduce systemic inflammation and/or gastrointestinal side-effects. This study recruited 155 healthy participants (79 males; 26.42 years ± 0.55 and 76 females; 25.82 years ± 0.54), randomly allocated to one of five different treatment groups: iron and curcumin placebo (FS0_Plac), low dose (18 mg) iron and curcumin placebo (FS18_Plac), low dose iron and curcumin (FS18_Curc), high dose (65 mg) iron and curcumin placebo (FS65_Plac), and high dose iron and curcumin (FS65_Curc). Completed questionnaires and blood samples were collected from all participants at baseline (day 1), mid-point (day 21), and at end-point (day 42). Results showed a significant reduction in IL-6 in the FS65_Curc group (0.06 pg/mL ± 0.02, p = 0.0073) between the mid-point and end-point. There was also a significant reduction in mean plasma TNF levels in the FS65_Curc (0.65 pg/mL ± 0.17, p = 0.0018), FS65_Plac (0.39 pg/mL ± 0.15, p = 0.0363), and FS18_Curc (0.35 pg/mL ± 0.13, p = 0.0288) groups from mid-point to end-point. A significant increase was observed in mean plasma TBARS levels (0.10 µM ± 0.04, p = 0.0283) in the F18_Plac group from baseline to end-point. There was a significant association with darker stools between FS0_Plac vs. FS65_Plac (p = 0.002, Fisher's exact test) suggesting that high iron dose in the absence of curcumin leads to darker stools. A reduction in inflammation-related markers in response to co-administering supplemental iron alongside formulated curcumin suggests a reduction in systemic inflammation. This supplementation approach may therefore be a more cost effective and convenient alternative to current oral iron-related treatments, with further research to be conducted.


Assuntos
Curcumina , Biomarcadores , Curcumina/farmacologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Ferro/farmacologia , Masculino , Estresse Oxidativo
12.
World J Biol Chem ; 12(5): 87-103, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34630912

RESUMO

Alcoholic liver disease (ALD) due to chronic alcohol consumption is a significant global disease burden and a leading cause of mortality. Alcohol abuse induces a myriad of aberrant changes in hepatocytes at both the cellular and molecular level. Although the disease spectrum of ALD is widely recognized, the precise triggers for disease progression are still to be fully elucidated. Oxidative stress, mitochondrial dysfunction, gut dysbiosis and altered immune system response plays an important role in disease pathogenesis, triggering the activation of inflammatory pathways and apoptosis. Despite many recent clinical studies treatment options for ALD are limited, especially at the alcoholic hepatitis stage. We have therefore reviewed some of the key pathways involved in the pathogenesis of ALD and highlighted current trials for treating patients.

13.
Nutrients ; 13(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371810

RESUMO

Ferrous sulphate (FS) is a cost effective, readily available iron supplement for iron deficiency (ID). The pro-oxidant effect of oral ferrous iron is known to induce inflammation, causing gastric side-effects and resulting in poor compliance. Curcumin is a potent antioxidant and has also been shown to exhibit iron chelation in-vitro, although it is not established whether these effects are retained in-vivo. The aim of this study was therefore to assess the influence of a formulated bioavailable form of curcumin (HydroCurcTM; 500 mg) on acute iron absorption and status in a double blind, placebo-controlled randomized trial recruiting 155 healthy participants (79 males; 26.42 years ± 0.55 and 76 females; 25.82 years ± 0.54). Participants were randomly allocated to five different treatment groups: iron and curcumin placebo (FS0_Plac), low dose (18 mg) iron and curcumin placebo (FS18_Plac), low dose iron and curcumin (FS18_Curc), high dose (65 mg) iron and curcumin placebo (FS65_Plac), and high dose iron and curcumin (FS65_Curc). Participants were provided with the supplements according to their relevant treatment groups at baseline (0 min), and blood collection was carried out at 0 min and at 180 min following supplementation. In the treatment groups, significant difference was observed in mean serum iron between baseline (0 min) and at end-point (180 min) (F (1, 144) = 331.9, p < 0.0001) with statistically significant intra-group increases after 180 min (p < 0.0001) in the FS18_Plac (8.79 µmol/L), FS18_Curc (11.41 µmol/L), FS65_Plac (19.09 µmol/L), and FS65_Curc (16.39 µmol/L) groups. A significant difference was also observed between the two time points in serum TIBC levels and in whole blood haemoglobin (HGB) in the treatment groups, with a significant increase (1.55%/2.04 g/L) in HGB levels from baseline to end-point observed in the FS65_Curc group (p < 0.05). All groups receiving iron demonstrated an increase in transferrin saturation (TS%) in a dose-related manner, demonstrating that increases in serum iron are translated into increases in physiological iron transportation. This study demonstrates, for the first time, that regardless of ferrous dose, formulated curcumin in the form of HydroCurc™ does not negatively influence acute iron absorption in healthy humans.


Assuntos
Absorção Fisiológica/efeitos dos fármacos , Curcumina/administração & dosagem , Suplementos Nutricionais , Compostos Ferrosos/administração & dosagem , Ferro/sangue , Administração Oral , Adulto , Disponibilidade Biológica , Método Duplo-Cego , Feminino , Ferritinas/sangue , Voluntários Saudáveis , Hemoglobinas/análise , Humanos , Proteínas de Ligação ao Ferro/sangue , Masculino , Transferrina/análise
14.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201703

RESUMO

Global protein consumption has been increasing for decades due to changes in demographics and consumer shifts towards higher protein intake to gain health benefits in performance nutrition and appetite regulation. Plant-derived proteins may provide a more environmentally sustainable alternative to animal-derived proteins. This study, therefore, aimed to investigate, for the first time, the acute effects on glycaemic indices, gut hormones, and subjective appetite ratings of two high-quality, plant-derived protein isolates (potato and rice), in comparison to a whey protein isolate in a single-blind, triple-crossover design study with nine male participants (30.8 ± 9.3 yrs). Following a 12 h overnight fast, participants consumed an equal volume of the three isocaloric protein shakes on different days, with at least a one-week washout period. Glycaemic indices and gut hormones were measured at baseline, then at 30, 60, 120, 180 min at each visit. Subjective palatability and appetite ratings were measured using visual analogue scales (VAS) over the 3 h, at each visit. This data showed significant differences in insulin secretion with an increase in whey (+141.8 ± 35.1 pmol/L; p = 0.011) and rice (-64.4 ± 20.9 pmol/L; p = 0.046) at 30 min compared to potato protein. A significantly larger total incremental area under the curve (iAUC) was observed with whey versus potato and rice with p < 0.001 and p = 0.010, respectively. There was no significant difference observed in average appetite perception between the different proteins. In conclusion, this study suggests that both plant-derived proteins had a lower insulinaemic response and improved glucose maintenance compared to whey protein.


Assuntos
Biomarcadores/metabolismo , Glicemia/metabolismo , Ingestão de Alimentos , Oryza/química , Proteínas de Plantas/farmacologia , Solanum tuberosum/química , Proteínas do Soro do Leite/farmacologia , Adulto , Aminoácidos/análise , Apetite , Hormônios/sangue , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Peptídeos/sangue , Saciação , Escala Visual Analógica , Adulto Jovem
15.
Front Physiol ; 12: 687605, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149460

RESUMO

Commercial saturation divers are exposed to unique environmental conditions and are required to conduct work activity underwater. Consequently, divers' physiological status is shown to be perturbed and therefore, appropriate strategies and guidance are required to manage the stress and adaptive response. This study aimed to evaluate the daily energy expenditure (DEE) of commercial saturation divers during a 21-day diving operation in the North Sea. Ten saturation divers were recruited during a diving operation with a living depth of 72 metres seawater (msw) and a maximum working dive depth of 81 msw. Doubly labelled water (DLW) was used to calculate DEE during a 10-day measurement period. Energy intake was also recorded during this period by maintaining a dietary log. The mean DEE calculated was 3030.9 ± 513.0 kcal/day, which was significantly greater than the mean energy intake (1875.3 ± 487.4 kcal; p = 0.005). There was also a strong positive correction correlation between DEE and total time spent performing underwater work (r = 0.7, p = 0.026). The results suggested saturation divers were in a negative energy balance during the measurement period with an intraindividual variability in the energy cost present that may be influenced by time spent underwater.

16.
Antioxidants (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073115

RESUMO

Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson's disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood-brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood-brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models.

17.
Cells ; 10(5)2021 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065122

RESUMO

Exposure to high levels of glucose and iron are co-related to reactive oxygen species (ROS) generation and dysregulation of insulin synthesis and secretion, although the precise mechanisms are not well clarified. The focus of this study was to examine the consequences of exposure to high iron levels on MIN6 ß-cells. MIN6 pseudoislets were exposed to 20 µM (control) or 100 µM (high) iron at predefined glucose levels (5.5 mM and 11 mM) at various time points (3, 24, 48, and 72 h). Total iron content was estimated by a colourimetric FerroZine™ assay in presence or absence of transferrin-bound iron. Cell viability was assessed by a resazurin dye-based assay, and ROS-mediated cellular oxidative stress was assessed by estimating malondialdehyde levels. ß-cell iron absorption was determined by a ferritin immunoassay. Cellular insulin release and content was measured by an insulin immunoassay. Expression of SNAP-25, a key protein in the core SNARE complex that modulates vesicle exocytosis, was measured by immunoblotting. Our results demonstrate that exposure to high iron levels resulted in a 15-fold (48 h) and 4-fold (72 h) increase in cellular iron accumulation. These observations were consistent with data from oxidative stress analysis which demonstrated 2.7-fold higher levels of lipid peroxidation. Furthermore, exposure to supraphysiological (11 mM) levels of glucose and high iron (100 µM) at 72 h exerted the most detrimental effect on the MIN6 ß-cell viability. The effect of high iron exposure on total cellular iron content was identical in the presence or absence of transferrin. High iron exposure (100 µM) resulted in a decrease of MIN6 insulin secretion (64% reduction) as well as cellular insulin content (10% reduction). Finally, a significant reduction in MIN6 ß-cell SNAP-25 protein expression was evident at 48 h upon exposure to 100 µM iron. Our data suggest that exposure to high iron and glucose concentrations results in cellular oxidative damage and may initiate insulin secretory dysfunction in pancreatic ß-cells by modulation of the exocytotic machinery.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina/efeitos dos fármacos , Ferro , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Ferro/metabolismo , Ferro/farmacologia , Camundongos
18.
Front Nutr ; 8: 678105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055861

RESUMO

Purpose: The purpose of this study was to investigate whether mouth rinsing with a pink non-caloric, artificially sweetened solution can improve self-selected running speed and distance covered during a 30 min running protocol. Methods: Ten healthy and habitually active individuals (six males, four females) completed two experimental trials in a randomised, single-blind, crossover design. Each experimental trial consisted of a 30 min treadmill run at a self-selected speed equivalent to 15 (hard/heavy) on the rating of perceived exertion scale. During exercise, participants mouth rinsed with either a pink or a clear non-caloric, artificially sweetened solution, with performance, perceptual and physiological measures obtained throughout. Results: Self-selected running speed (+0.4 ± 0.5 km·h-1, p = 0.024, g = 0.25) and distance covered (+213 ± 247 m, p = 0.023, g = 0.25) during the 30 min running protocol were both improved by 4.4 ± 5.1% when participants mouth rinsed with the pink solution when compared to the clear solution. Feelings of pleasure were also enhanced during the 30 min treadmill run when participants mouth rinsed with the pink solution, with ratings increased from 3.4 ± 0.7 in the clear condition to 3.8 ± 0.6 in the pink condition (+0.4 ± 0.5, p = 0.046, g = 0.54). Conclusion: Mouth rinsing with a pink non-caloric, artificially sweetened solution improved self-selected running speed, total distance covered, and feelings of pleasure obtained during a 30 min running protocol when compared to an isocaloric and taste-matched clear solution.

19.
Pharm Res ; 37(8): 150, 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32686026

RESUMO

PURPOSE: Novel particle engineering approach was used in this study to generate high dose inhalable effervescent particles with synergistic effects against Pseudomonas aeruginosa biofilms. METHODS: Spray dried co-amorphous salt of ciprofloxacin (CFX) and tartaric acid (TA) was prepared and coated with external layer of sodium bicarbonate and silica coated silver nanobeads. Design of experiments (DOE) was used to optimize physicochemical properties of particles for enhanced lung deposition. RESULTS: Generated particles were co-amorphous CFX/TA showing that CFX lost its zwitterionic form and exhibiting distinct properties to CFX/HCl as assessed by FTIR and thermal analysis. Particles exhibited mass mean aerodynamic diameter (MMAD) of 3.3 µm, emitted dose of 78% and fine particle dose of 85%. Particles were further evaluated via antimicrobial assessment of minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentration (MBEC). MIC and MBEC results showed that the hybrid particles were around 3-5 times more effective when compared to CFX signifying that synergistic effect was achieved. Diffusing wave spectroscopy results showed that the silver containing particles had a disruptive effect on rheological properties as opposed to silver free particles. CONCLUSIONS: Overall, these results showed the potential to use particle engineering to generate particles that are highly disruptive of bacterial biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciprofloxacina/farmacologia , Inaladores de Pó Seco/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Administração por Inalação , Glicolipídeos/química , Testes de Sensibilidade Microbiana , Piocianina/química , Dióxido de Silício/química , Prata/química , Bicarbonato de Sódio/química , Tartaratos/química
20.
Antioxidants (Basel) ; 9(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660079

RESUMO

Oxidative stress is a key mediator in the development and progression of Parkinson's disease (PD). The antioxidant n-acetylcysteine (NAC) has generated interest as a disease-modifying therapy for PD but is limited due to poor bioavailability, a short half-life, and limited access to the brain. The aim of this study was to formulate and utilise mitochondria-targeted nanocarriers for delivery of NAC alone and in combination with the iron chelator deferoxamine (DFO), and assess their ability to protect against oxidative stress in a cellular rotenone PD model. Pluronic F68 (P68) and dequalinium (DQA) nanocarriers were prepared by a modified thin-film hydration method. An MTT assay assessed cell viability and iron status was measured using a ferrozine assay and ferritin immunoassay. For oxidative stress, a modified cellular antioxidant activity assay and the thiobarbituric acid-reactive substances assay and mitochondrial hydroxyl assay were utilised. Overall, this study demonstrates, for the first time, successful formulation of NAC and NAC + DFO into P68 + DQA nanocarriers for neuronal delivery. The results indicate that NAC and NAC + DFO nanocarriers have the potential characteristics to access the brain and that 1000 µM P68 + DQA NAC exhibited the strongest ability to protect against reduced cell viability (p = 0.0001), increased iron (p = 0.0033) and oxidative stress (p ≤ 0.0003). These NAC nanocarriers therefore demonstrate significant potential to be transitioned for further preclinical testing for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...