Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 27(13): 135401, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25765084

RESUMO

Although the effects of the electronic excitations during high-energy radiation damage processes are not currently understood, it is shown that their role in the interaction of radiation with matter is important. We perform molecular dynamics simulations of high-energy collision cascades in bcc-tungsten using the coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We compare the combination of these effects on the induced damage with only the effect of electronic stopping, and conclude in several novel insights. In the 2T-MD model, the electron-phonon coupling results in less damage production in the molten region and in faster relaxation of the damage at short times. These two effects lead to a significantly smaller amount of the final damage at longer times.

2.
J Phys Condens Matter ; 26(8): 085401, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24503969

RESUMO

Electronic effects have been shown to be important in high-energy radiation damage processes where a high electronic temperature is expected, yet their effects are not currently understood. Here, we perform molecular dynamics simulations of high-energy collision cascades in α-iron using a coupled two-temperature molecular dynamics (2T-MD) model that incorporates both the effects of electronic stopping and electron-phonon interaction. We subsequently compare it with the model employing electronic stopping only, and find several interesting novel insights. The 2T-MD results in both decreased damage production in the thermal spike and faster relaxation of the damage at short times. Notably, the 2T-MD model gives a similar amount of final damage at longer times, which we interpret to be the result of two competing effects: a smaller amount of short-time damage and a shorter time available for damage recovery.

3.
J Phys Condens Matter ; 25(23): 235401, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23676992

RESUMO

We propose a simple new way to evaluate the effect of anharmonicity on a system's thermodynamic functions, such as heat capacity. In this approach, the contribution of all the potentially complicated anharmonic effects to the constant-volume heat capacity is evaluated using one parameter only: the coefficient of thermal expansion. Importantly, this approach is applicable not only to crystals, but also to glasses and viscous liquids. To support this proposal, we perform molecular dynamics simulations of several crystalline and amorphous solids as well as liquids, and find a good agreement between the results from theory and simulations. We observe an interesting non-monotonic behavior of the liquid heat capacity with a maximum, and explain this effect as being a result of competition between anharmonicity at low temperature and decreasing number of transverse modes at high temperature.

4.
J Phys Condens Matter ; 25(12): 125402, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23449460

RESUMO

Understanding and predicting a material's performance in response to high-energy radiation damage, as well as designing future materials to be used in intense radiation environments, requires knowledge of the structure, morphology and amount of radiation-induced structural changes. We report the results of molecular dynamics simulations of high-energy radiation damage in iron in the range 0.2-0.5 MeV. We analyze and quantify the nature of collision cascades both at the global and the local scale. We observe three distinct types of damage production and relaxation, including reversible deformation around the cascade due to elastic expansion, irreversible structural damage due to ballistic displacements and smaller reversible deformation due to the shock wave. We find that the structure of high-energy collision cascades becomes increasingly continuous as opposed to showing sub-cascade branching as reported previously. At the local length scale, we find large defect clusters and novel small vacancy and interstitial clusters. These features form the basis for physical models aimed at understanding the effects of high-energy radiation damage in structural materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...